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Preface

What M x does

MX isastructural equation modeling package, but it is flexible enough to fit avariety of
other mathematical models. At its heart is a matrix algebra processor, which can be used
by itself. There are many built-in fit functions to enable structural equation modeling and
other experimentsin matrix algebra and statistical modeling. It offersthe fitting functions
found in commercial software such as LISREL, LISCOMP, EQS, SEPATH, AMOS and
CALIS, including facilitiesfor maximum likelihood estimation of parametersfrommissing
data structures, under normal theory. Complex ‘nonstandard’ models are easy to specify.
For further general applicability, it allows the user to define their own fit functions, and
optimization may be performed subject to linear and nonlinear equality or boundary
constraints.

How to Read this M anual

The bad newsisthat this manual is quite long; the good news isthat you don't need to read
itall! Chapter 1 containsan introduction to multivariate path modeling. The "how to" part
of themanual startsin Chapter 3, in which general syntax conventionsand job structure are
laid out, followed by description of the commands necessary to read data. Chapter 4 deals
with the heart of MX: how to define matrices and matrix algebraformulae for model-fitting,
and ways of estimating and constraining parameters. Methods of changing the default
fit-function, of decreasing and increasing the quantity (and quality) of the output, and for
fitting sub-models efficiently, are described in Chapter 5. The last chapter supplies and
briefly describes a number of example scripts. The Appendices describe the use of Mx
under different operating systems, error codes, introductory matrix algebra and reciprocal
causation.

Origin

Thedevel opment of Mx owesmuchto LISREL and | acknowledge the pioneering effort put
in by Karl Joreskog & Dag Sorbom. There are many who have supported and encouraged
this effort in many different ways. | thank them all, and especialy Lindon Eaves, Ken
Kendler and John Hewitt since they also provided grant support®, and David Fulker for
allowing modification of his notes on matrix algebrato be supplied as an appendix to this
manual. Jack McArdle and Steve Boker provided excellent path diagram drawing software
(RAMPATH) which was the basis for the development of Mx Graph, Luther Atkinson
suggested the binary file save option; Buz Brown programmed the Rectangular file read,
Karen Kenny and John Fritz organized theinteractive website; these effortswere part of the
excellent software, hardware and consultancy support supplied by University Computing
Servicesat the Medical College of Virginia, VirginiaCommonwealth University. The Mx

! The author was supported by ADAMHA grants MH-40828, MH-45268, AG-04954, MH-45127 and RR-
08123
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team includes my colleagues Drs. Steve Boker, Hermine Maes, Mr. Gary Xie and Wayne
Hadady.

What’s New in 1999

New inthiseditionisthe Mx Graphical interface documentation. Chapter 2 describes how
to take advantage of this software which isavailable for the MS Windows (Win3.x/98/NT)
platform. Jobsbuilt with diagrams or scripts can be executed on aUnix server to get results
more quickly for CPU intensive modeling.

Several features have been added to enable modeling ordinal data. P ?isthe ordinal file
command, which operateslikearectangular file read except that it expectsordinal datawith
a lowest category of zero. Likelihoods are then computed using numerical integration
software provided by Genz (1992). The same software isused in the latest function which
returns all of the cell proportions for a covariance matrix and set of thresholds.

A new frequency command (described on p ?) supplements the weight command by
allowing different cases to have different weights. This feature allows data-weighting
approaches to be implemented.

A number of new featuresimprove the quantity and quality of statistical and matrix output.
First, the difference between a supermodel and a submodel can be computed automatically
if the option Issat is used to identify a supermodel, or if option sat is used to enter the fit of
a supermodel against which new models are to be compared. Matrix output can be
formatted with any legal Fortran format, and matrices written can be appended to existing
files. Thislatter feature is useful for simulation work because the results of several model -
fitting runs can be written to the samefile for later analysis.

Several new examples have been added, both to the text and to the Mx website. Itisa
pleasure to continue to offer Mx free of charge, which allows rapid fixing of bugs and
immediate rel ease of new features.

Internet Support

MX ispublic domain; it is available from the internet at http://griffin.vcu.edu/mx/. With
a suitable browser, you can obtain the program, documentation and examples, send
comments, seethelatest version availablefor your platform, and so on. E-mail bug reports,
requests for further information, and most important your comments and suggestions for
improvements to neale@psycho.psi.vcu.edu - it is hard to overemphasi ze the importance
of constructive criticism. Y ou can also grab the code for avariety of operating systemsvia
anonymous ftp to opal.vcu.edu. Please have the courtesy (and self-interest) to E-mail me
so that | can keep you informed of updates, bug reports etc.

A graphical interfacefor structural equation modeling, “Mx Graph” iscurrently inal pha-test
to Mx that will relieve the user of getting to gripswith the details of scripts. Evenwith this
interface, knowledge of the script language is necessary to use advanced features and
methods. The good news isthat a much deeper understanding of modeling can come from
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thisactivity. We arein the process of revising the script language to enhance its flexibility
and readability.

Technical Support

A number of users have been most helpful finding errorsin the documentation or software
or both, and for suggesting new features that would make MXx easier to use. Thank you! |
hopethat all userswill forward any comments, bug reports, or wish-liststo me. My current

addressis:

address Department of Psychiatry
Virginia Institute for Psychiatric and Behavioral Genetics
Box 126 MCV
Richmond VA 23298-0126, USA

phone 804 828 3369

fax 804 828 1471

E-mail neale@psycho.psi.vcu.edu (internet)

and my order of preference for communication is E-mail, fax, phone and snail mail. When
reporting problems, E-mail is especialy useful to include the problem file.

Tofind Goto

Matrix Algebra Appendix C
Learn basic Syntax

SEM Path Analysis Neae & Cardon (1992) chapter 5
Loehlin (1987)
McArdle & Boker (1990)

Everitt (1984)

How to do basic SEM Chapter 1
How to recast basic SEM Chapter 1
more efficiently

How to use the graphical interface Chapter 1
Job Structure Chapter 3
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Declare Matrices Chapter 4
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Write Output to Files
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1

Introduction to
Structural Equation M odeling

What you will find in this chapter

# Guidelines for building your own scripts
# A brief introduction to the capabilities of Mx.
# Three different ways to implement a structural equation model in Mx

1.1 Guideinesfor good Script Style

12

Programming, like much of life, requires compromises. We must balance the time taken to
do things against their value. Now, there are both short-term considerations (“how do | get
this working as soon as possible?’) and long-term ones (“how can | savetimeinwhat I'm
going to be doing next week?’). Thisusually resultsin making a choice of method that is
based on the following factors:

# Time taken to get the script working properly

# Clarity, which can affect time to debug and modify
# Efficiency of the script - how fast it runs

# Flexibility - how easy it isto alter.

Normally, wewould choose amethod that will solve our problem in the shortest time. 1f we
expect to use the same basic model but with a varying number of observed and latent
variables, then it is worth spending the extra time to write a script in which these changes
can be made easily.

Part of writing good scriptsisto write them so that you, or colleagues can understand them.
Sometimes readability can be at the expense of efficiency, and it is up to you to decide on
the bal ance between thetwo. One of the most important thingsto remember isto put plenty
of commentsin your scripts. Doing so can seem like awaste of time, but it usually pays
off handsomely when the scripts are read by yourself or others at alater date.

Matrix Algebra

Mx will evaluate matrix algebra expressions. It has a simple language, which uses single
lettersto represent matrices, certain charactersto represent matrix operations, and a special
syntax to invoke matrix functions. Thus the program can be used as a matrix algebra
calculator, which is helpful in a variety of research and educational settings, and which
provides a powerful way to specify structural equation and other mathematical models.
Most users of multivariate statistics will need to know some matrix algebra, and Appendix
| givesabrief introduction to the subject, along with examples and exerciseswhich use Mx.
Even those familiar with matrix algebra should review the “How to do it in MXx” sections
inthe appendix asthat iswhere elementary principles of writing Mx scripts are introduced.
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1.3 Structural Equation Modeling

One of the most common uses of Mx isto fit Structural Equation Models (SEM) to data.
A nice aspect of SEM isthat the models can be represented as a path diagram. Mx Graph
incorporates path diagram drawing software directly; thissoftwareisin &-test. For now, we
concentrate on tranglating path diagrams into models ‘by hand’. This approach has the
advantage of giving greater understanding of the modeling process, and can yield highly
efficient scripts which are easy to change when, for example, the number of variables
changes.

There are many accounts of SEM, which vary widely in complexity and clarity, and which
are aimed at different fields of study or different software packages (Joreskog, K.G. &
Sorbom, 1991; Bentler, 1989; Everitt, 1984; Loehlin, 1987; McArdle & Boker 1990; Bollen
1992; Neale & Cardon 1992; Steiger, 1994). The brief account given hereis intended to
provide a practical guide to setting up modelsin Mx for those with some familiarity with
path analysis or SEM. We begin with asimple, foolproof method, called RAM (McArdle
& Boker 1990) which would be ideal except that it is inefficient for the computer to fit.
More efficient approaches will follow.

RAM Approach

A path diagram consists of four basic types of object: circles, squares, one-headed and two-
headed arrows. Circles are used to represent latent (not measured) variables? and squares
correspond to the observed (or measured) variables. In a path diagram, two types of
relationship between variables are possible: causal and correlational. Causal relationships
are shown with a one-headed arrow going from the variable that is doing the causing to the
variablebeing caused. Correlational or covariancerel ationships are shown with two headed
arrows. A specia type of covariance path is one that goes from the variable to itself.
Variation in avariables which is not due to causal effects of other variablesin the diagram
isrepresented by this self-correlational path. Sometimesthisis called ‘residual variance’
or ‘error variance'.

Figure 1.1 shows a sample path diagram with two latent variables and four observed. The
RAM model specificationinvolvesthree matrices. F, A and S. Sisfor the symmetric paths,
or two-headed arrows, and is symmetric. A is for the asymmetric paths, or one-headed
arrows, and F isfor filtering the observed variables out of the whole set. The dimensions
of these matrices are fixed by the number of variablesinthemodel. A and S are bothmxm,
and F is mpxm, where m=my+m_is the total number of variables in the model, m, the
number of observed variables, and m, the number of latent variables. In our example we
have my=4, m =2 and m=6.

2 The use of the term ‘variable’ here may be somewhat confusing to those familiar with operations research
and numerical optimization. In numerical optimization, avariable is something that is to be changed to find the
optimum. In SEM, these are called ‘free parameters or smply ‘ parameters’.



Introduction to structural equation modeling 3

SICI MRS

Figurel.1 Example path diagram with two latent variables (P and Q) and four
observed variables (R, S, T, U)
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and Note how F is an elementary matrix of 1's and 0's with a 1 wherever the row variable
is the same as the column variable.

Now that we have defined these matrices, computing the predicted covariance matrix under
thismodel isrelatively simple. The formulais:

F(1&A)'' S(1&A)'P
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which is easy to program in Mx and is quite general. So, suppose that we have measured
R, S Tand U on asampleof 100 subjects, and computed the covariance matrix. How would
wefit themode in Figure 1.1 to these data, using the above formula? A sample script might
look like this:

I Simple RAM approach to fitting models
1

#Ngroups 1

#define latent 2 ! Number of latent variables
#define meas 4 ! Number of measured variables
#define m 6 ! Total number of variables, measured + latent
Title Ram approach to fitting models I Title
Data NInput=meas NObserved=100 I Number of variables,subjects
CMatrix File=ramfit.cov ! Reads observed covariance matrix
Matrices; ! Declares matrices
A Full mm I One-headed paths
S Symm m m I Two-headed paths
F Full meas m ! Filter matrix
I Iden m m I ldentity matrix
End Matrices; ! End of matrix declarations
Specify A I Set certain elements of A as free parameters
000000
000000
100000
200000
030000
040000
Specify S I Set the free parameters in S
0
50
006
0007
00008
0000009
Value 1.0 S11S22 I Put 1%s into certain elements of S
Matrix F ! Do the same for Matrix F but a different way
001000 ! Note - this could be omitted if F had
000100 ! been declared ZI instead of full.
000010
000001
Start .5 All I Supply .5 starting value for all parameters

Covariance F & ((1-A)” & S); ! Formula for model
End group
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Thisscriptisorganizedinto six sections: (i) defines, (i) titleand datareading, (iii) declaring
matrices, (iv) putting parameters into matrices, (v) putting numbers into matrices and (iv)
the formula for the model. More detail on all these components can be found in the body
of the manual, but let’slook at some of the basic features.

#

Anything after ! isinterpreted as a comment. Blank lines are inactive but serve to
visually separate the sections of the script.

The #define statement is used to preassign numbers to certain strings of letters.
After acommand like #define latent 2, MX will interpret ‘latent’ as 2 whenever
itistryingtoread anumber. #NGroups indicatesthe number of groupsin the script.

The Titlelineisrequired.
The Data lineis required and supplies essential information about the number of
variables to be analyzed (NInput_vars) and the number of subjects measured

(Nobservations).

TheCMatrix statement readsin the observed covariance matrix from afile, in lower
triangular format. The file ramfit.cov might look like this:

1.51
.31 1.17
.22 .19 1.46

11 .23 .34 1.56
where the * indicates free format.

TheMatrices lineisrequired and startsthe declaration of matricesthat will be used
in the covariance statement. We make use of the #define' d words to get them the
right size.

Specify puts free parameters into matrices. All the usable elements of the matrix
arelisted (i.e. only the lower triangle for symmetric matrices, or only the diagonal
elements for diagonal matrices). A zero indicates that the element is fixed, and a
positive integer indicates that it's free. Different positive integers represent
different free parameters; if we wished to have parameters 1 and 2 set equal, we
would replace the 2 with a 1.

Thefixed values of 1 for the variances of the latent variables are given with avalue
statement.

Start .5 all setsall the free parametersto .5 asan initial guess of the parameter
estimates.
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# The Covariance statement supplies the formulafor the model. We have used the
& operator for quadratic matrix multiplication (A&B = A*B*A”), to make the script
more efficient. It would work equally well, and only slightly more slowly with the
full expression F*(1-A) *S*(1-A) *F~ given above.

# End group marks the end of the script.

What are the advantages and disadvantages of setting up models with the RAM method?
On the positive side, it is extremely simple and general. It doesn’t matter if there are
feedback loops, everything will be specified correctly (see Appendix D). Of course, some
care may be required with the choice of starting values, but we do have a practical method.
On the negative side, the covariance statement involves inverting the (1-A) matrix, which
will be slow when we have many variables or aslow computer. Many models do not need
to use matrix inversion in the covariance statement. Infact, itisonly feedback loopswhich
make this necessary; we can therefore seek a simpler, more efficient specification of the
model. There are many of these, but we shall be aiming for one that is systematic and
straightforward.

Simplified Mx Approach for M odels without Feedback L oops

Consider Figurel.1l again. It hastwolevelsof variables: PandQat level 1,andR, S T and
U at level 2. We could put all the two-headed arrows at the first level in one matrix, al the
level 1tolevel 2 arrowsin asecond matrix, and all the two-headed level 2 arrowsin athird
matrix. Letting these matricesbe X, Y and Z respectively, we would get:

PQ RSTU
PO R(b 0 R(fO0OO
P(1 a s|lc 0 slogo o

X " Ly - ad 5 . J
Qla 1 T|0 d T{o O h O
ulo e Ulo 00 i

It so happens that al the observed variables are at the same level (2) in this model, which
makes life easy for us. Although it may seem that we have artificially contrived the model
to havethisdesirablefeature, many structural equation models can bewrittenthisway. The
covariance formulafor this model is:

YXY) % Z

and this has avery simple multivariate path diagram to represent it, as shown in Figure 1.2.
Toget fromFigure1.1to Figure 1.2 al wedid wasto collapse the vector of variableswithin
each level to form a single vector of variables at each level. The paths are collapsed into
matrices of paths.
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Figurel1.2 Multivariate path diagram for the system shown in Figure 1.1.

Exercises:

1 Fit the model using the simpler X, Y and Z specification.

2. Find the change in chi-squared when the parameters b and ¢ are set equal

3 Pick asimple published model and data and fit it with Mx with the RAM
approach

4. Find amore efficient method to fit the model in 3.

To best learn how to use Mx, readers should attempt the exercises themselves before

reading the next section, which describes the answer to the first exercise.
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I Mx partly simplified approach to fitting models
1

#Ngroups 1

#define top 2 I Number of variables in top level
#define bottom 4 ! Number of variables in bottom level

Title Mx simplified approach to fitting model ! Title

Data NInput=bottom NObserved=100 I Number of variables,subjects
CMatrix File=ramfit.cov ! Reads observed covariance matrix
Matrices; I Declares matrices
X Stan top top free I Two-headed, top level
Y Full bottom top ! From top to bottom arrows
Z Diag bottom bottom free I Two-headed, bottom level
End Matrices; ! End of matrix declarations
Specify Y I Declare certain elements of Y as free parameters
310
320
0 33
0 34
Start .5 All I Supply .5 starting value for all parameters
Covariance Y*X*Y” + Z; I Formula for covariance model
End group

What tricks have we used here? First, the keyword Free in the matrix declaration section
makes elements of matrices X and Z free. Matrix X is standardized, which meansthat it is
symmetric with 1'sfixed on the diagonal, so free parameter number 1 goesin the lower off-
diagona element (the upper off-diagonal element is automatically assigned this free
parameter as well, because standardized matrices are symmetric). Matrix Z isdiagonal, so
it will have parameters 2 through 5 assigned to its diagona elements. We could put
parameters 6 through 9in matrix Y, but 31 to 34 are used instead, just to emphasize that we
don’t want our specification numbersto overlap with specifications automatically supplied
by Mx when the free keyword is encountered at matrix declaration time.

Note how this script is much shorter than the original, because of the reduced need for
specification statementsto put parametersinto matrices. Thisillustrates avaluable feature
of programming with MX: with appropriate matrix formulation of the model, specification
statements can be eliminated. The advantage of setting up models in this way is that
modifying the model to cater for adifferent number of observed or latent variables becomes
trivially ssmple. The more complex the model, the greater the value of this approach.
Another advantage is that the computer time required to evaluate the model can be greatly
reduced. We have not only eliminated the need for matrix inversion when the predicted
covariance matrix isbeing cal culated, but al so reduced the size of the matricesthat arebeing
multiplied.
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Fully Multivariate Approach

We now turn to athird implementation of the same model to show how the matrix algebra
features can be used to make an efficient script which can be easily modified. Take another
look at Figure 1.1. Thefirst latent factor, P, causes the first two observed variables, Sand
T, whereas the second factor, Q, only affects the other two observed variables, U and V.
Perhaps we expect to change the number of observed variablesin one or other of these sets.
If so, we might want to split the causal paths into two matrices, one for each factor. So,
what was matrix Y in the simplified Mx approach will be partitioned into 4 pieces:

the effectsof Pon Sand T

the effects of P on U and V (zero)
the effects of Q on Sand T (zero)
the effectsof Qon U and V

OO OO

WEe'll use a separate matrix for each of these, and use definition variables to make the
changesin their dimensions automatic.
!

I Mx multivariate approach to fitting models
1

#Ngroups 1

#define top 2 I Number of variables in top level (P,Q)
#define left 2 I Number of variables in bottom left level (R,S)
#define right 2 I Number of variables in bottom right level (T,U)

#define meas 4
]

Title Mx simplified approach to fitting model ! Title

Data NInput=meas NObserved=100 I Number of variables & subjects
CMatrix File=ramfit.cov ! Reads observed covariance matrix
Matrices; ! Declares matrices

X Stan top top free I Two-headed, top level

J Full left 1 free ! From P to R,S arrows

K Zero left 1 ! From Q to R,S (zeroes)

L Zero right 1 ' From P to T,U (zeroes)

M Full right 1 free ! From Q to T,U arrows

Z Diag meas meas free I Two-headed, bottom level

End Matrices; ! End of matrix declarations
Start .5 All I Supply .5 starting value for all parameters

Begin Algebra;

Y = JIK _
LM ;

End Algebra;

Covariance Y*X*Y*" + Z; ! Formula for model
End group
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So, the major change here is to use the algebra section to compute matrix Y. We have
eliminated the need for a specification statement by applying the keyword free to matrices
Jand M. If wethought that we might expand the model to have more than one factor for
each side, then we could further generalize the script by changing the matrix dimensions
from 1 to #define' d variables.

1.4 Other Typesof Statistical M odeling

Theexampleinthischapter only dealswith fitting astructural equation model to covariance
matrices, but Mx will do much more than this! There are many types of fit function built
in to handle different types of datafor structural equation modeling, including:

# Means and covariance matrices

# Correlation matrices with weight matrices
# Contingency tables

# Raw data

Also, the program’s multigroup and algebra capabilities cater for tests of heterogeneity,
nonlinear equality and inequality constraints, and many other aspects of advanced structural
modeling.

Mx hasapowerful set of matrix functions and a state-of -the-art numerical optimizer, which
makeit suitable to implement many other types of mathematical model. Onecrucial feature
makes this possible — user-defined fit functions. The program will optimize almost
anything. Given familiarity with matrix algebra and the basics of Mx syntax, it is often
much quicker to implement anew model with M X than to writea FORTRAN or C program
specifically for thetask. A dight drawback isthat the M x script may run more slowly than
a purpose built programs, although this is usually well worth the saving in development
time.
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2 Introduction tothe
MXx Graphical User Interface

What you will find in this chapter
How to use Mx Graphical User Interface (GUI) to:

Draw path diagrams

Automatically create and run scripts from diagrams
View & print results on diagrams

Run Mx scripts

View output in Project Manager, HTML or text formats
Edit and debug Mx scripts

Compare results and export them to other programs.

HEHFHHHHE

21 UsingMx GUI

Mx GUI can be started by double clicking the Mx icon in either the group window in
Windows 3.xx, or from the Start menu in Windows 95. In Windows 95 you may drag the
Mx 32 icon from the explorer to the desktop to create a shortcut, which will simplify
starting the program.

File Contains Data for
PostScript Printers Only

Figure2.1 Mx GUI with Project Manager Window and two diagram windows open
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2.2

Figure 2.1 shows adiagram of thelayout of the Mx GUI when the Project Manager window
is active. The button bar icons are grouped into: filing, editing, printing, running, and
drawing. As with any GUI you are free to behave as you like, clicking on buttons in any
order. There are, however, somelogical waysto proceed that will savetime. The purpose
of thischapter isto demonstrate the capabilities of theinterface and how to useit efficiently.

Y ou can draw path diagrams at any time during an M x session. A diagram which is either
visibleinawindow or minimized iscalled open. An MXx script can be automatically created
from all open diagrams, sent to the Project Manager, and run. Parameter estimates will be
displayed in the diagrams.

Path diagrams are models of latent variables (circles) and observed variables (squares),
which are related by causal (one-headed) and covariance (two-headed) paths. While
diagrams can be drawn and printed in the abstract, to fit models we must attach ! or ‘ map’
Tour datato the squares. Mapping datais the best starting point for drawing a diagram.

Fitting a Simple M odel

Preparing the Data

We start with a simple dataset: a covariance matrix based on a sample of 123 subjects
measured on two variables, X and Y. Thisinformation isentered in a .dat file, which for
those familiar with Mx notation, contains the Data, CMatrix, and Labels part of an Mx
script:

Data Ninput=2 Nobservations=123

CMatrix

.95

.55 1.23

Labels X Y

Thisfileissupplied with Mx Gui; biv.dat wasinstalled in the examples subdirectory of the
Mx installation directory. For details on how to use other types of data, see chapter 3. To
createthefileyourself, any text editor, such asMicrosoft's Edit program or Notepad will do.
Thereisatext editor built into the Mx GUI, and by choosing the menu item File]New, or
clicking the new fileicon ==, anew file can be edited and saved from the File menu or by
clicking the savefile*-. If thefileis created with awaordprocessor such as Wordperfect or
Word, it must be saved as ASCI| text.

Editing Dat Files

Mx GUI includes away to prepare datafor analysis with either Mx scripts or diagrams. It
will read existing .dat files, or write new ones. To see how this works, the example file
ozbmiodz.dat in the examples subdirectory of where Mx GUI wasinstalled can beread into
the dat file editor. Click on MxProject and select data edit. In the data edit window, click
L oad, and then select the ozbmiodz.dat file. The number of input variables (N1=2) appears
inthetop left window, and the number of observations (N0=380) appearsin the next window
totheright. Thirdisthefilename. In the last window at the top is the type of data. Last,
in the largest panel the labels from the Labels command appear. All these fields may be
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edited to create anew dat file. Editing the filename is best done when saving thefile.

Depending on the type of data being read there may be one or two additional folder tabs
visible below thelargewindow containing thelabels. Clicking onthesetabsallowsthedata
to be edited or to name an external file from which they can beread. In the ozbmiodz.dat
case, both means and covariances are supplied as data and they are both read in from
externa files.

Drawing the Diagram

To start anew diagram, click on the ‘new drawing’ icon = then click the button marked
[DataMap]. Then click the biv.dat file to open. The program then shows a list of the
variables in this file. You can highlight one or more of these variables by using click,
shift-click, click and drag, or control-click ! theusua Microsoft Windowsconventions. Get
both X and Y highlighted by positioning the pointer over the X variable, pressing the left
mouse button down, dragging it to the Y variable, and then releasing the mouse button. X
and Y should now be highlighted in blue. Hit and two new observed variables will
appear in the diagram ready for analysis (they may have appeared behind the data map
window). Click to close the data map window.

Note that the variables are created with variance paths “* (small double-headed arrows).
These paths represent residual variance; they are sometimes called autocorrelational paths.
Thisiscalled a‘null model’. It has only variances and no covariances.

Fitting the M odel

Click torunthisjob. Youwill haveto supply ajob name and afile name. Enter null
for both, without any file extension. Mx GUI will then build, save and run the script file
null.mx. Inaddition Mx automatically savesthe diagram into the file nul I .mxd which can
be reloaded |ater.

While the job is running, a counter appears. The numbers it displays show that the Mx
engineis till trying to solve the problem. When it has finished the message ‘ Parsing to
Core’ may appear, indicating that the graphical interface is busy interpreting the results.
Oftenthisstepis so fast that it isinvisible.

Viewing Results

Results Panel

After the job has run, the Results Panel appears (see Figure 2.2). It contains information
about the status of the optimization; in this example, thewords* Appears OK’ should be on
the top line, meaning that the solution it found is very likely to be aglobal minimum?®.

3 For reference, other possible Optimization conditions are shown in Table 2.1.
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Figure2.2 The Results Panel to view the results

Table2.1 Correspondence between optimization codes and IFAIL parameter

Optimization Code IFAIL  Serious Action

Failed! Incomputable -1 Yes Check output & script for errors

Appears OK Oorl No Carefully accept results

Failed! Constraint Error 3 Yes Check output & script for
constraint errors

Failed! Too few iterations 4 Yes Restart from estimates

Possibly Failed 6 Sometimes  Restart from estimates

Failed! Boundary Error 9 Yes Send script & datato

nea e@psycho.psi.vecu.edu

The next line indicates the type of fitting function used, ML ChiSq, which is the usual
Maximum Likelihood fit function for covariance matrices, scaled to yield a +
goodness-of-fit of the model. The +? is39.546 in this example, with lower and upper 90%
confidenceintervalsof 21.564 and 62.957 respectively. Thereisonedegree of freedom, and
the model fits very poorly (p=.000). There are two free parameters estimated (the two
variance parameters) and three observed statistics (the two variances and the covariance).
Akaike's Information Criterion (AIC) is greater than zero, reflecting poor fit. This
impression is supported by the RMSEA statistic, which should be .05 or less for very good
fit, or between .05 and .10 for good fit. The high value of .538 for RMSEA, and its 90%
confidence intervals which do not overlap regions of good fit (0.393 is greater than .10)
indicate that the model doesnot fitwell. Click on the toremovethe ResultsPanel. The
Results Panel can be reviewed later by selecting the Output|Fit Results option.

Viewing Resultsin the Diagram

When the Results Panel closes, the estimates of the variance parameters for this model
becomevisiblein thediagram, on the double-headed arrows. Theresults panel information
has been copied into the diagram. These results can be deleted entirely (click on the results
box in the diagram and hit delete or ctrl-x) or the specific elements may be selected for
viewing and printing. To display only thefit and p-value we would double click the results
box to bring up the results box and change the selections as shownin Figure 2.3. If the null
optioninthe Preferences|Job options panel (see p 25) wasused to these data, the grayed-out
fit statistics would be available for display in the diagram.
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Figure2.3 The Results Box Panel to Change the results displayed in the diagram

Project Manager

More information about this model can be found in the Project Manager ! click the
button (or the toolbar icon ", to open thiswindow. Highlighted, the script file
name isin the left panel, the group nameisin the middle panel, and the first matrix in this
group is in the right hand panel. The values in this matrix are shown in the Matrix
Spreadsheet at the bottom of the Project Manager window.

Fit statisticsfor the model are shown in the left-hand panel of the manager, F: 39.546 being
the value reported in the Results Panel. Y ou can see the degrees of freedom, df: 1, in the
left-hand Project Manager panel aswell, but depending onyour display you may haveto use
the dider at the bottom of the panel or resize the window to seethem. Moreinformation on
the fit of the model can be seen in the matrix spreadsheet at the bottom of the Project

Manager by clicking the[Statisticg| button. Click on[Statistics| againtotoggletheview back
to the highlighted matrix.

In the middle panel isalist of the groupsinthejob ! there'sonly onegroup inthiscase. In
the right hand panel isalist of matrices used to definethemodd (I, A, Fand S), along with
the observed covariance matrix (ObsCov), expected covariance matrix (ExpCov) and the
residual, ObsCov-ExpCov (ResCov). If you click on the ObsCov matrix you can see the
data matrix in the matrix spreadsheet at the bottom of the Project Manager. This view of
the selected matrix can be turned on and off with the button on the right of the
manager. As described below these matrices can be copied to the cliploard with ctrl-c.

The matrix spreadsheet can show not only the values of the matrix (and its labels) but also
the parameter specifications. If you click onthe[Value] button, the parameter specifications
will be shown. Try this out for the S matrix. This is the matrix of Symmetric arrows
(two-headed). There are two of these, one going from X to X and one goingfromY to Y.
The free parameters are numbered 1 and 2 in the specs view of the S matrix. A parameter
numbered zeroisfixed. The A matrix containsthe A symmetric paths (single-headed, causal
arrows) which run from column variable to row variable. There are no causal pathsin this
model, so al of the elements of A are zero.

Click on ExpCov in the right hand panel. To the right is the formula used for this model.
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Models built from diagrams currently use one general formula for the covariance:

ExpCov = F(I&A)'1S(1&A)'VP)

which is written using the quadratic operator & in the Mx matrix language: F&((1-A)~&S)
Beginners don't need to know how these formulae are used to fit the model. Details are
givenin Chapter 1, or see McArdle & Boker (1990) for amore compl ete description of this
formulation.

Click on the ResCov matrix in the right hand panel. Notice how the diagonal elements of
this matrix are very small. They are presented in scientific notation so 1.23e-08 means
.0000000123 and this indicates a good fit of the model to these elements. The model does
not fit the off-diagonal elements at all well. It predicts no covariance between these
variables, but .55 is quite substantial covariance with this sample size --- asis shown by the
fit statistic of +%=39.55 for 1 df. The model should be revised.

Resizing the Project Manager

The Project Manager window may be resized by pulling the side, top, bottom or corner of
it to anew position. It isalso possibleto resize the proportion of the window that displays
jobs by dragging* the bottom of the group panel up or down to anew position. Also, the
[View] button will switch the matrix spreadsheet on and off.

Saving Diagrams
All open diagrams are automatically saved to file when the job is run, but sometimesitis
useful to save diagramsmanually. Thenull model diagram could be saved directly (without
running it) using the following steps:
# Click on the diagram to select it
# Click on the save-to-disk icon “*** (or use the File|Save menu item)
# Enter afilename such asnull.mxd (.mxd isthe default extension for Mx diagrams,

which will be added automatically if you enter null without .mxd at the end). Note
that all active (minimized or displayed) diagram windows are saved to thefile.

See page 29 for details on running and saving scripts.
2.3 Revising a Model
Revising modelsis easy with the graphical tools.
Adding a Causal Path

Returning to the null path diagram, alinear regression model can be devised by adding a
causal path from the independent variable, X, to the dependent variable, Y. It may clarify

“To drag something, move the mouse pointer over it, press down the left mouse button, move it to its new
position, then release the mouse button.
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the path estimates to put more space between the variables. Click on the open space to
de-sdlect dl thevariables. Thenclick on'Y and moveit alittle to theright (if you want to
keep it aligned with X, press shift throughout the operation). Now click on the arrow tool
icon == on theicon bar. Inthe diagram window, click on X, hold the mouse button down
and drag it to Y, and release the button. The diagram should now have an arrow from X to
Y. Usualy we want these arrows to be straight, but sometimesit is useful to make them
curved, which can be done by dragging the little blue square in the middle.

Y ou can now hit in the diagram window. Enter regress for the Job name. Note that
if instead you enter null as the jobname, it will overwrite the previous Mx script and
diagram files. This overwriting approach is useful when trying to get a model correctly
specifiedinitially, butitisbetter to keep substantively different modelsin different diagram
and script files. Doing so also allows comparison between them.

The model fits perfectly, as seen by the ML ChiSq of zero in the Results Panel. It also has
zero degrees of freedom, because it has the same number of parameters asit does observed
statistics. Such amodel isoften called ‘ saturated’. Click on[OK]to view the new estimates
in the diagram.

Adding a Covariance Path

The procedure to add a covariance path is essentially the same as for adding a causal path,
but you use the covariance drawing tool instead. Note that there are two types of covariance
path: variance==-which appearsasalittleloop from avariabletoitself, and covariance .
WEe'll add the covariance type to the diagram.

First, delete the causal path by selecting the pointer tool (the white arrow ) click on the
path once (a blue dot will appear in the middle of the path to show that it is selected) and
pressdeleteor ctrl-x (cut). Note that you can undo amistake with the undo tool =+, and that
tool-changes can be accomplished via a right mouse button click on a diagram.

Second, add the covariance path by selecting the covariancetool ==, Then click on X, drag
the pointer to Y, and release. The path is automatically curved a certain amount. The
curvature can be increased or decreased by dragging the blue dot in the middle of the path.
Single-headed arrows can be made to curve in the same way, but their default follows the
convention that they are straight lines, and we recommend keeping them that way if possible
(reciprocal interaction betweentwo variablesA6B and B6A requiressomecurvatureto stop
the lines being on top of each other).

Third, hit to rerun the model. Enter covar as the name of the job and script. Again
thismodel fits perfectly, with zero degrees of freedom. The parameter estimates are not al
the same as the regression model we fitted earlier. These two models may be called
‘equivalent’ because they always explain the data equally well, and a transformation can
be used to obtain the parameter estimates of one model from the other.

Changing Path Attributes
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A variety of characteristics of paths can be changed and made visible in the diagram with
the Path Inspector. Double-click the covariance path that we just created in the diagram to
bring up the Path Inspector. Using the Inspector a path can be fixed, bounded, or equated
to other paths. Confidenceintervalscan berequested, and thedisplay of labels, start values
and other information can be switched on or off. These changes can be made to severa
paths at once by selecting them all and checking the* Apply to All Selected’ box inthe Path
Inspector.

File Contains Datafor
PostScript Printers Only

Figure2.4 MXx Path Inspector with parameter F fixed at .2

Fixing a Parameter

For illustration, we will test the hypothesisthat the covariance between X and Y isequal to
point two. In the Path Inspector panel for the covariance arrow check (T) “Fix This
Parameter.” Double click the start value field and typein .2 to give the fixed value for this
path. One useful way to remember that a path isfixed isto display only the start value and
not the path label. Uncheck the “Display Label” box and check the “Display Start Value”
box. At the end your Path Inspector panel should look like Figure 2.4. Click OK and then
click in the diagram window to rerun the model. Enter anew job name such asfixed.

If you now look at the Project Manager and click [Statistics], you can seethefit of thismodel
and compareit with the other models so far. Note that the Path I nspector also allowsyou to
change the boundaries to restrict path estimatesto liein aparticular interval. To constrain
a parameter to be non-negative, we would simply change the lower bound to zero.

Confidence Intervals
For any free parameter you can request confidence intervals. Just double click on the path,

and check the “Calculate CI” and the “Display ClI” boxesin the inspector. Run the model
again, but this time just click without entering a new job name so that the job
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overwrites the existing one in the manager. After al, we are fitting the same model and
simply calculating a few more statistics. Mx computes likelihood-based confidence
intervals which have superior statistical properties to the more common type based on
derivatives. Chapter 5 describes the method used, and Neale & Miller (1997) discuss the
advantages of using thistype of confidenceinterval. The main disadvantageisthat they are
relatively slow to compute, so we suggest computing them only when the model isfinally
correctly specified.

Equating Paths

MX uses the Labels of the paths to decide whether or not they are constrained to be equal .
Toillustrate, add alatent variable to the diagram, and draw causal paths from it to both X
and Y, and constrain the two pathsto be equal. First click on the Circletool =+, and click
onthediagramto add thecircle. Second, click on the causal path tool and add the two paths
from the new latent variable to X and Y. Third, click on one of the paths and give it the
same label as the other. Finally, to make the model identified we should delete the
covariance (double-headed) path between X and Y. Onrunning it, we should find the same
perfect fit (+*=0) of themodel. Thistimewe havethe squareroot of the covariance of X and
Y as estimates for the two paths.

Note that the latent variable we added had an variance path with the fixed value of 1.00 on
it. Thisis different from the observed variables, which come with free variance paths,
corresponding to residual error variance.

Having a fixed variance of 1.00 makes our latent variables standardized by default. Of
course, we could make alatent variable unstandardized by fixing it to some other value, or
(if there is enough information in the model) estimate its variance as a free parameter.

Moving Variables and Paths

It iseasy to modify the appearance of adiagram by moving one or morevariables. To select
avariable, de-select everything by clicking on the selection tool “=*> and then clicking on
some open space in the diagram. Then click on the one variable, and drag it to its new
position. To move several variablestogether, click on one of them, then pressthe shift key
and click on another variable. Alternatively, you can click on the background of the diagram
and drag arectangle around the variables you wish to select. When all the variablesto be
moved are selected, you can drag them to their new location.

24 Extending the M odel

Multiple Groups: Using Cut and Paste

A valuablefeature of graphical interfacesistheability to rapidly duplicate objects by means

® Clicki ng the right mouse button in a diagram offers an alternative, menu-driven way to change the
drawing tool
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of cut and paste. Here we go through a simple multi-group example --- the classical twin
study --- to illustrate these actions.

Fitting the ACE Genetic Model

Structural equation modeling of datafrom twins has been described in detail elsewhere. In
summary, twin pairsare diagnosed aseither Monozygotic (MZ) or Dizygotic (DZ). Thepair
istreated as a case, and the MZ pairs are analyzed in a separate group from the DZ. The
structural equation model is configured with three latent variables which model possible
effects of: additive genes (correlated 1.0 in MZ twins and .5 in DZ pairs); shared
environment (correlated 1.0in both types of twin pair); and individual -specific environment
(uncorrelated between twins). Thisisatwo-group example so wewill draw two diagrams.

Drawing the MZ Diagram

To begin modeling, open the Mx GUI and click on the open anew drawing icon==-. Then
click the[DataMap] button and the[Open] button and select the file ozbmiomz..dat from the
examples subdirectory. Select only the variable BMI-T1 and click todropitinto the
drawing. Move the data map window out of the way or close it, and start working on the
drawing.

We need to add A1, C1 and E1 latent variables. Click on the latent variable icon = and
draw threecirclesabovethe BMI-T1 variable. Relabel thevariablestoread A1, C1 and E1
by double clicking inside the circles and typing in the new text.

Next we need to add the causal paths from A1, C1, and E1 to BMI-T1. Click on the causal
arrow icon = and click and drag from A1 to BMI-T1, and release. Do the samefor C1to
BMI-T1 and E1 to BMI-T1. Mx automatically labels arrows and variables for us, but we
want to use specific names for our paths: a, c and e. Therefore, we double click on each
path in turn and rename it in the label field of the Path Inspector. Care is needed here!
Depending on the order in which the latent variables were drawn, there may already be a
path called a, ¢ or e on one of the latent variables. Relabelling the causal paths may have
inadvertently caused an equality constraint that we don't want. Relabel any of the latent
variablevariance paths as necessary to makethem different from a, cand e. Finaly, because
wearegoingtomodel individual-specific variation with ewecanremovethevariance path ===
on BMI-T1. Click insideit so that its blue select button appears and hit delete or ctrl-x.

We now have amodel for Twin 1, and we need to replicate it for the Twin 2. Either press
ctrl-a or go to the Edit menu and click Select All. Press ctrl-c for copy and ctrl-v for paste
(or use theicons* and = or the Edit menu equivalents) and you have a new copy of the
model for an individual. Use the mouseto drag it to the right of the existing model. You
may have to resize the window to give yoursdlf spacefor this. Alternatively, you can zoom
out the drawing with the “= button (see below).

A very important step comes next. We have duplicated the model for twin 1 --- both the A,
C and E part and the phenotype BMI-T1. We do not want to model the covariance between
BMI-T1 and BMI-T1. When we duplicated the model for twin 1, the new BMI-T1 box was
black rather than blue. Thisisbecauseit is not mapped to data. To map it, we select the
variable BMI-T1 (and only this variable) in the diagram. Then hit [DataMap], click on
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BMI-T2in the variablelist, and then [Map]. The variable in the diagram turns blue and the
label isrevised to say BMI-T2. Mx now knows what datawe are analyzing.

To complete the model for MZ twins, we need to do two things. First, change the labels of
thelatent variables causing BMI-T2to A2, C2 and E2 by double clicking on the circles and
typing in the new names. This step isfor cosmetic purposes - Mx will still fit the correct
model even if the latent variables have incorrect names. Second, we must specify that the
covariances between A1 and A2 and between C1 and C2 are fixed at one. Click on the
covariance pathtool =, Click on A1, dragto A2 and release. Do thesamefor C1 and C2.
Note that if you drag from right to left, the arrows curve downwards rather than upwards.
The curvature can be adjusted by clicking on the arrow and dragging the blue selection
button in the middle.

Y ou must now fix the A1-A2 and C1-C2 covariancesto one. Click on each path in turn,
check the “Fix this parameter” box, make the starting value 1, and select “ Display Starting
Value'. At this stage the diagram should look something like Figure 2.5. It would be
possible to run this model, but the parameters a and ¢ are confounded when we have only
MZ twins. To identify the model we must add the DZ group.

Drawing the DZ Diagram

Adding the DZ twin group iseasy. Click onthe MZ diagram and hit ctrl-a (select all) and
ctrl-c (copy). Then pressthe new drawingicon===. Click onthe new diagram, pressctrl-v
(paste) and the MZ modél is copied into the new drawing window. Two stepsremain. First
click on the covariance between Al and A2 and changeits starting valueto .5 ! the value
specified by genetic theory. Second, map the observed variablesto data. Hit the[DataMap]
button and select the file ozbmiodz.dat. Highlight BMI-T1 and BMI-T2 in thevariablelist
and click [AutoMap]. Because the variable labelsin the ozbmiodz . dat file are the same as
the variable labelsin the ozbmiomz . dat file, the automap function maps the variables from
the list to the diagram correctly.
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Figure2.5 Starting values for an ACE twin model for MZ twins

Fitting the Model
Finally, run the model by clicking the button in either diagram. Enter ace as the
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filename for the script and diagrams. The Results Panel should report afit of 2.3781 and
the estimates in the diagram should look like those in Figure 2.6.
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Figure 2.6 Parameter estimates from fitting the ACE model to MZ and DZ twin data

Notethat inthisexample, thereweretwo Mx errorsinthe error window. Theseerrorswarn
usthat although we had supplied both means and covariances as data (in the .dat files), only
a model for covariances was supplied. See below on page 23 for details on how to

graphically model means.
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Selecting Different Variablesfor Analysis

To unmap variables, you must select one and only onevariable, go to the datamap window,
select only that variablein thelist, and then press the[Unmap] button. Y ou can then remap
thevariablein your diagram to another variableinthelist by selecting thevariableinthelist

and pressing [Map].

The[AutoMap| feature lets you automatically map boxesto variablesin a dataset by name.
If you have a series of unmapped boxesin your diagram, and a series of unmapped variables
in your dataset, then pressing[AutoMap] will map them by name. Thisisvery useful when
you have run an analysis on one dataset, then wish to fit the same model to a different
dataset. It also comes in handy when you have multiple groups, with variables with the
same names being analyzed in different groups, as we did with the twin study example
above.

Modeling Means

The Mx GUI alows the user to draw and fit models to means as well as to covariances.
This is simplified with a new type of variable in a path diagram, the triangle. Let's add
means to the twin model we developed earlier. If you do not still have the MZ and DZ
drawings open, load them from the file ace.mxd.

Select the MZ diagram and click on thetriangletool ==, Point the mouse somewhere bel ow
the rectangles and click onceto create atriangle. Then use the causal path tool = to draw
paths from the triangle to the variables BMI-T1 and BMI-T2. Do the samethinginthe DZ
group. Mx has automatically set new, free parameters on the paths and we can run the job.

The output for thisjob should give exactly the same goodness-of-fit to the model aswe had
before, because the model for the means is saturated. It has one free parameter for each
mean. Let'stest the hypothesisthat Twin 1 meansare equal to Twin 2 means. GototheMZ
diagram and make the label on the path from the triangle to BMI-T1 the same as the label
fromthetriangleto BMI-T2. Dothesameinthe DZ diagram (keep thelabelsdifferent from
those on the paths from the triangles in the MZ diagram). Run the job again, and giveit a
new name, like tleqt2. In the Project Manager window we see that the < (F:) has only
dightly increased from 2.38 to 2.55 ! an increase of less than .2 for two degrees of
freedom, whichisnon-significant. Thisindicatesthat the hypothesisthat the means of twin
1 and twin 2 are equal is not rejected.

To continue the example we can test whether MZ means are equal to DZ means. Thisis
done by going back to the DZ diagram (ctrl-tab is a shortcut way to switch between Mx
windows) and changing the pathsfrom the triangle so that they have the same label asthose
inthe MZ group. Run the model again and call it mzeqdz. The+? of 6.24 hasincreased by
about 3.7 over the tleqt2 model, for one degree of freedom, whichis not significant at the
.05 level. The hypothesis that the MZ means equal the DZ means is not rejected. The
sample sizes here (637 MZ and 380 DZ pairs) are quite large, so the chance that this result
is atype |l error (failure to detect a true effect) is small. The observed MZ-DZ mean
difference must be small relative to the variance of body massindex in these data. We can



24

Introduction to structural equation modeling

check this result in the Project Manager window. Select the tleqt2 job and examine the
predicted MZ and DZ mean in the ExpMean matrix for the MZ group and compare it with
the ExpMean matrix in the DZ group by aternately selecting the MZ and DZ groups. The
DZ meanis .45 and the MZ mean is.34 which is approximately .11 of astandard deviation
different because the expected variance (see ExpCov) is about .97 for this model. The
standard error of the difference between two means is given by the formula

\/SDlz/nl% SDzz/nz. Thisformulaisn't entirely appropriate for the case in hand because we
have correlated observations making up the two samples. If we pretend that they are
uncorrel ated then the standard error would be approximately %1/760 + 1/1274=.0458. |f we
pretend that the twins are perfectly correlated then we would have %1/380 + 1/637=.0648.
The first estimate of the standard error would give a z-score for the difference of
.11/.0458=2.40 (significant at .05 level), whereas the second would give 1.70 (not
significant at .05 level). The truth lies somewhere in between, and a very nice property of
themaximum likelihood testing isthat it handlesthese complicationswith easeand provides
appropriate tests for both independent and correlated observations. The +? difference test
above showed that the difference was not quite significant at the .05 level. Better still, we
can obtain confidence intervals on this +? test and on the parameter estimate itself.

TheMXx Model for Means

When computing a predicted mean, Mx traces the paths from an observed variable
(rectangle) to a mean variable (triangle) and multiplies the paths together. If there are
severa triangles or pathways from a triangle to an observed variable, it sums their
contributions to the mean. Note that, unlike covariances, there is no changing of direction
when traversing paths, and only the single-headed arrowsare used. The matrix formulaMx
uses to compute the predicted means (shown in ExpMean in the Project Manager) is

ExpMean " F(1&A)'*M U

where U is a unit matrix and M contains the paths from the triangles to the circles and
sguares.

2.5 Output Options

Zooming in and out

To zoom into a part of a diagram, click on the zoom in tool == then click on the diagram
workspace and drag a rectangle around the part of the figure that you wish to enlarge.

To zoom out, select the zoom out tool “** click on the diagram and drag a squareinsideit.
Note that this feature works proportionately, so that it is possible to get a very tiny and
unreadable figure if you drag avery small square by mistake.

Sometimes zooming operations can cause a diagram to become so big or small that it
disappears altogether. A click on the zoom undo button == will shrink or expand the
diagram to roughly fit the window size.



Introduction to the Mx Graphical User Interface 25

Copying Matricesto the Clipboard

A matrix may be copied to the Windows clipboard by selecting it in the right hand panel of
the Project Manager window, and pressing ctrl-c or the copy icon ==+, The contents of the
windows clipboard may then be pasted into wordprocessing or spreadsheet applications,
usually by pressing ctrl-v or clicking the appropriate paste tool or menu item. By default,
the matrices are copied with a tab character between each column, and a carriage return
character at the end of each row --- suitable for many applications. These defaults may be
changed using Preference]M atrix Options. For example, to obtain output formatted suitable
for aLaTeX table, the user-defined delimiters should be changed to & for columns and \\
for rows. Note also that the number of decimal places may be changed. Diagrams may be
copied to the clipboard as described below.

Comparing Models

When several models have been fitted to the same data, it is possible to generate a table of
parameter estimatesand goodness-of -fit stati sticsautomatically. Themenuitem OutputjJob
Compare will build afile of comparisons, which you can view with atext editor. Thefirst
column of thisfile containsalist of all the pathsin the model, followed by thefit statistics.
The remaining columns are the estimates and fit statistics found for all the modelsin the
project manager. This table may then be copied into other software for publication. The
format of the table depends on the Preference|M atrix Options in the same way as copying
matrices to the clipboard.

To get only a few of the models in the manager, ssimply delete the jobs that should be
excluded from the comparison, by selecting them and hitting the Project Manager
button.

Setting Job Options
MXx uses a default set of job options suitable for most general purpose model-fitting, but
there may be times when other settings are desired. The Job Option panel (menu

Preference-Job Option) is used to change these settings. Figure 2.7 shows the default
settings.

File Contains Datafor
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Figure2.7 The Job Option Panel. Text output with four decimal places of precision
and 80 columnwidth will be generated. Debug statisticsand individual pedigreelikelihood
statistics will not be generated. Confidence intervals (90%) on the fit statistics will be
computed, and null model and power statistics will not. Parameter estimates will not be
standardized. New Mx jobs created from diagrams will be started from the starting values
in the diagram, not the current estimates.

Text Output

Having run an Mx job, you may wish to view the regular text output. If so, simply hit the
output tool ===, TheMx GUI comeswith ashareware editor called notebook . exe whichyou
can select. It alows you to edit and view much larger files than Microsoft Windows
Notepad editor. Y ou can select an alternativetext viewer via Preferences (though we do not
recommend Microsoft Notepad because of itsinability to edit large files).

HTML Output

Flexview is supplied with Mx to simplify the viewing of HTML output. In order to useiit,
you must first tell M x to produce HTML output when it runs, before running thejob. This
you do via the Preferences-Job Option menu item.  Netscape 4.5 could be chosen, but
earlier versions start up slowly every time. Under Internet Explorer 4.0, choosing explorer
as the html viewer (typically found in c:\windows\explorer.exe) works quite well. For
large output files, Flexview does not work well and text output or another viewer should be
used. Flexview is shareware and you should register it if you decideto useit regularly.

HTML and Text Appearance
You can change the number of decimal places and the width of Mx output by entering
different values in the decimals and width fields.

Debug Output

Auxiliary output about optimization may be printed to the file nagdump.out by requesting
NpSol values greater than O (up to 30). Debug output will go to thisfile aswell if Debug
isset to 1. Debug prints the values of the parameter estimates and the fit function for each
group for every iteration during optimization. Such filescan bebothlarge and slow to write
to disk, so we recommend only using these features in an emergency.

Individual Likelihood Files
If you are using raw data, it is possible to save the individual likelihood statistics (see #p.
72) to afile by entering afilename in the text box “Ind. Likelihood File”.

Additional Statistical Output

Certain ‘comparative’ fit indices require the computation of the fit of a Null model. By
default the null model has free parameters for the variances and zero covariances. This
model will be fitted automatically by Mx and the statistics will be computed if the Null
model radio button is set to Auto. Sometimes, a different null model than the default is
required; this model should be fitted by the user and the +* and degrees of freedom noted.
These statistics would then be entered by first selecting the Manual radio button and then
entering valuesin the Null ChiSgand Null Df fields. Theadditional statisticswill bevisible
in the Results Panel.
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Power Calculation

Tocomputestatistical power, the* Power Calculation” checkbox should be checked, and the
alpha-level and degreesof freedom should be entered. Seethe#p. 62 for information on how
to fit models that assess statistical power.

Confidence Intervalson Fit

By default the Mx GUI requests 90% confidence intervals on fit. If an aternative interval
isrequired, it can be entered in thistext field. If Cl's are not required, then the check box
can be cleared. Note that this is not the same as confidence intervals on the parameter
estimates, which must be requested for paths using the Path Inspector.

Standardize

By default, Mx produces unstandardized parameter estimates. Thisdefault may be changed
by sdlecting the “ Standardize” check box. The graphical interface then generates different
Mx scripts which include non-linear constraint groups to remove the variance of the
variables. This box should be checked when working with correlation matrices to obtain
correct confidence intervals on the parameters. Correlation matrices should be entered in
dat files with aKMatrix not aCMatrix command.

Restart

The Restart check box changes the scripts generated from diagrams. Instead of using the
starting values of paths, the current estimates are used instead. If a model has been fitted
before, and isonly dightly changed, e.g. by fixing one parameter, then re-running from the
existing estimates may be much faster than starting from the starting values again.

Optimization Options

MX uses certain default values of the optimization parameters which have proven to be
reliable under avariety of conditions. Occasionally it is necessary to use different settings;
these technical options are described on p. 101. For the most part, these options should not
be changed.

If optimization ends with the message “ Possibly Failed” you can try to restart optimization
automatically with Random Start at -2 for two attempts to solve the problem. If you want
to try randomized starting values for amodel, set it to a positive value, but be sure to put
sensible boundaries on all your free parameters.

Printing

To print diagrams, click theprintericon  or use the File menu and select Print. Notethat
the part of the diagram visible in the window is printed. Print can also be used to print
scriptsfrom the editor window. The script font can be changed with the Preferences|Script
fonts menu item.

Printed output can be previewed withthe Filg]Print preview menuitem or the preview tool “=
onthetoolbar. Thisfeatureisagoodway to savetimeand paper. Somefeatures of printing,
like printing the object handles on selected objects, may be unexpected, so print preview is
recommended.



28

Introduction to structural equation modeling

Improving Print Quality
There are various waysto improve the visual appearance of the diagrams. Generaly, these
are worth doing for final copy, such as printing for publication or to make slidesfor atalk.

First, you can move the path |abels away from the paths by clicking on them and dragging
themto anew location. Occasionally it may be difficult to select the label because another
object, such as the path, is selected instead. If so, try clicking slightly to the right of the
label. Second, in Preferences you can choose font size and appearance, separately for the
pathsand the variables. Alsoin Preferencesyou can choose linethickness, which currently
affects both the paths and the lines around the variables. To add impact for color printing,
you can change the color of the background and foreground components (paths, boxes, text
etc.) inadiagram. Third, remember that the amount of information displayed about a path
I |abels, estimates, confidence intervals, boundaries and so on ! can be changed for
individual paths with the Path Inspector. Revising the appearance of many paths
simultaneously can be done by selecting several paths and checking the “apply to all” box
in the Path Inspector.

The variance arrows sometimes become obscured by paths going to and from variables.
They may be dragged to one of eight positions around circles or squares.

Aligning Variables and Paths The grid tool “=* adds a grid to the currently active
drawing. Thecolor and size of thisgrid can be changed viathe Preferences|Grid menuitem.
Itisthen simpleto align circles and squares to this grid by moving them. Much faster isto
use the snap to grid feature “==, which automatically aligns variables on the grid. Objects
will move only to another grid place, so moving avariable asmall distance often won't have
any effect at all. Moving it agreater distance will allow it to snap to a new grid position.
The granularity or size of the grid can be changed using Preferences|Grid size.

Pathslabelsare given adefault central position based on the length and direction of the path
they arelabeling. If apathislonger inthe vertical axisthan the horizontal, itslabel will be
centered vertically. Conversely, if itislonger inthehorizontal axisitslabel will be centered
horizontally. By moving objectsfurther away it issometimespossibleto automatically align
relevant path labels; thisisthe preferred way to align path labels. If necessary it ispossible
tomoveeachindividual label away from itsdefault position by dragging it to anew position
I but this should be used as a last resort. We recommend that print preview (File-Print
Preview or “*=* be used to check the visual appearance of afigure.

Exporting Diagramsto other Applications

Mx GUI usesthe standard Windows clipboard to export diagramsto other applications. To
export adiagram, left-click once on the background of the diagram, and then press ctrl-c or
press the copy icon***, This copiesthefigureto the clipboard. Open another application,
such as Wordperfect, MS Word, Harvard Graphics or Visio and press ctrl-v (or select the
paste menu command or click the pasteicon ). Partial figuresmay be copied in the same
way, by selecting only part of the diagram before pressing ctrl-c.

Diagrams may also be printed to a postscript file, if you have a postscript printer driver
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installed. From the printer control menu, select encapsulated postscript as the postscript
option, and check the 'Print to file' box.

Filesand Filename Extensions

MXx uses and creates a lot of different files, with specific filename extensions attached to
them. To save disk space, some of them may be deleted. Table 2.2 lists the filenames and
their contents, and indicates whether they may be safely deleted. Typically one does not
want to del ete data or useful drawing or script files. Malfunctioning scripts might be better
deleted. At thistime .prj files cannot be read back into the GUI.

Table2.2 Summary of filename extensions used by Mx
File extension Contents Delete
.dat Mx data Probably not
.mx Input script Probably not
.mxd Mx path diagram Probably not
.mxo Text output If no longer needed
.htm Hypertext output If no longer needed
.mx| Frontend output Yes
.prj MX project Probably not
.exe Executable Mx program No
dil Dynamic link library No

2.6 Running Jobs
Running Scripts

Many previous users of Mx and those working with non-standard models (such as those
involving constraints or special fit functions) will want to be able to run such models. The
Mx GUI has been designed to make working with scripts efficient. It lets you open script
files, edit them, and view output in either the manager or text or hypertext (HTML) formats.
In addition, if there are errorsin the script, it will display them and with aclick of a button
will take you to the editor window with the problem text highlighted.

Let'stake an example script. Start the GUI and click the openicon =+, Choose twinpar.mx
and hit intheeditor window. The Mx statistical enginerunsthejob inthe background
and then deliversthe output to the manager. We don't need to bother with the details of this
particular job, it'sjust an exampleto show how severa groupsappear. Y ou can easily look
at the matrices in the different groups by selecting the group in the middle panel and the
matrix in the right hand panel.

As we run more jobs, perhaps editing the script or selecting other scripts, the Project
Manager fills up with the new jobs. The fit statistics from all jobs become visible in the
bottom panel when the[Statistics| button is pressed.
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Errorsin Scripts

To help debugging of Mx scripts, the line and column of the input file where an error
occurred is automatically sent to the GUI to speed up debugging of scripts. Let's see how
thisworks with an example.

Edit adummy script by hitting the new icon ==, Type in the following:
Title

Data Ngroups=1

Oops a mistake

Begin Matrices;

Hit and see what happens. Click the left mouse button on the error, and note how the
editor window shows the Oops text highlighted. Y ou are now in a good position to fix the
problem, if you are familiar with the script language. A full description of the languageis
givenin chapters 3-5 and examplesarein chapter 6. Courseson Mx arerun quiteregularly;
consult http://views.vcu.edu/mx.

Sometimesitishelpful tolook at thetext or HTML output fileto seefull details of theerror.
Click theright mouse button on the error to bring up the output file. WithHTML, the error
is automatically presented, with Text output it is necessary to scroll to the end of the file.

Editing Mx Header Files

MXx provides a system for advanced users to make it easier for the beginning user to start
using the program. Using thisapproach to script writing can also makeit easier for all users
to change the script for other data sets or to change the number of variablesin the analysis,
which variables are analyzed, the number of factors to be used, or even the type of model
to be fitted.

In the examples subdirectory, the files factor.mxt (template), factor.mxh (header) and
factor.dat (data file) illustrate how this can be used. Opening the header file, from the
MxProject-header_edit menu, the user can change the number of variables being analyzed,
or the number of factors being fitted by clicking on the relevant lines of the header filein
the header edit box. For a more detailed description of this example, see page 150. An
example of header and template files for fitting alternative genetic models to twin datais
described on page 151.

We expect this new feature to lead to a collection of header and template files that will be
added to the website http://www.vipbg.vcu.edu/mx in the future.

Using Networked Unix Workstations

Performance and Multi-Platform Environments

The difference in performance between high-end MS windows computers and Unix
workstations is narrowing all thetime. Indeed, the same hardware can be used for either
Unix or MSwindows so it might be argued that it has disappeared. However, it isnot very
cost-effective to supply every student and faculty member with the latest and fastest PC.



Introduction to the Mx Graphical User Interface 31

Many institutions still use amixed platform computing facility in which there are powerful
Unix serversavailablefor general use, a ong with PC computersthat have networked access
to these servers. The Unix machines often have large amounts of memory, high-speed disk
access and may offer much faster CPU than is available for PC's. To facilitate the use of
these remote machines, Mx GUI has a networking component which allows the user to
select aremote Unix host to run Mx scripts.

The Host Options Panel

Figure 2.8 shows the Host Options Panel set for local (on the PC on which Mx GUI is
running; left panel) and remote processing (right panel). By unchecking the local host
checkbox, the user can enter the IP address of the Unix machine and their username and
password. MX is not (yet) a standard part of the Unix operating system, so it must be
installed on the host in question before remote access to it will work. The files and
instructions for installation are available at http://ww.vipbg.vcu.edu/mxgui/unix.html.
As auser, you should make sure that your path on the Unix host includes the directory in
which Mx-Unix has been installed, which is usually Zusr/local/bin.
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Figure2.8 Host Options Panel set for local PC use (1eft) and remote Unix use (right).

Running a Job Remotely

The following steps are required to run ajob remotely:

# Make sure you have an account on a Unix host which has the Mx server installed
Go to the Host Options panel (Preferences-Host Options menu) and enter the
machine name, username and password

Click Run in your diagram or script window

Enter any commands to change directory® on the remote host and click ‘ Execute’
Click ‘Run Mx’

Click ‘RunMx’ againif it says Possible Incompatible Remote Engine, Install New
Remote Engine (this error often occurs spuriously)

# Wait for the job to run and to be transferred back to the GUI.

HHEHRHH

Transferring Filesto Unix Hosts
Running Mx GUI on aremote host has afew additional considerations. Foremost isthe use

% 0On sun systems it may be necessary to change the shell with the command ksh to allow more than one
job to be run per directory
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of files, especialy the File= subcommand used in Mx scripts. Any file mentioned in a
Fi le= subcommand must be transferred to the remote Unix host (using e.g., ftp) in order for
the Unix host to access it. For this reason, it is best not to put pathnames in the File=
subcommands, because of inconsistencies between the Unix filenaming system and the
windows filenaming system. It would become messy if the only place used for Mx files
was the root directory on the Unix host, so there are facilities for changing directory on the
remote host prior to running scriptsthere. Inthe Host Command window, the user can enter
aUnix command such as cd mymxfi les to change directory, before hitting the [Execute].

One exception to the need to transfer files to the remote host is the .dat file specified in a
diagram command. This file will be included in the script and automatically
transferred to the Unix host. For thisreason, it can be best to keep all the datain the .dat file
itself and not to use the File= subcommand at al. In some circumstances this may be
inefficient, especially if the network connection is slow, as all the datawill be transferred
with the job --- this applies especialy to large raw data files or large asymptotic weight
matrices. If several jobsareto berun using the same dataset, it may be more efficient to ftp
these files to the Unix host and return to using File= in the script.

Increasing Backend Memory

The default amount of memory available for the Mx engine to store data, perform matrix
algebra and optimization is 100,000 words for the PC version. This can be increased when
necessary by changing the value in the Run Options panel (Figure 2.8). The Unix versions
have a default of one million words of memory and at present this cannot be atered. If a
larger Unix version is required, please email neale@vipbg.vcu.edu for a specia build.
Sometimes more efficient re-specification of a problem can free up workspace.

2.7 Advanced Features

In this section we consider some of the more advanced features of Mx GUI, including
adding non-linear constraints to diagrams, and the use of continuous moderator variables.

Adding Non-linear Constraintsto Diagrams

In earlier sectionswe saw that it is straightforward to make one path equal another by giving
it the same name. Itisalso simpleto force the estimate of apath to lie within certain limits
by double-clicking the path and entering boundary constraints. Much less smple is the
addition of non-linear constraintswhich at thistime can be done only by directly editing the
script.
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Figure2.9 Higher Order Factor Model with nonlinear constraints imposed such that
the variances of F1 and F2 are constrained to equal 1.0 (.24+.872=1.0)

Figure 2.9 shows adiagram with a higher-order latent factor (H) and two first-order factors
F1 and F2. Suppose that we wish to constrain the variance of the second-order factors to
equal unity. One simpleway to do thismight beto eliminate H and allow thefactors F1 and
F2 to correlate, and give them error componentsfixed to unity. However, suppose that the
pathsfrom H were of substantiveinterest themselves, perhapsbecause of reportsfrom other
investigations. Thisexampleisfor illustration, so we'll do it the hard way with non-linear
constraints. Thedatacomefrom Horn & McArdle (1992) and concern the sub-scales of the
WAIS intelligence test, taken by subjects aged between 16 and 28 years of age. The tests
may be broadly categorized as verba (IN: Information; CO: Comprehension; Sl:
Similarities; and VO: Vocabulary) or spatial (PC: Picture Completion; BD: Block Design;
PA: Picture Arrangement; and OA: Object Arrangement).

The following steps are necessary:

1 Draw diagram

2. Build script from diagram (To Script)
3. Edit script file:

a Increase NGroups by oneto alow for new constraint group
b. Edit in the constraint group using Mx script language

4, Run the job from the script

5. View parameter estimates in the diagram

Themost difficult part of the sequenceis of course 3(b), where knowledge of the M x script
language and the way that the Mx GUI creates scripts is required. We now give a brief
description of the approach used to implement the constraints for this example.

Because the matrix expression for the covariances of all the variables (both latent and
observed) is(1-A 1) * S* (I-A™)" we can compute this by equating matrices to those of the
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first group, and entering this matrix formulain aAlgebra section. Moretricky isto extract
the relevant matrix elements corresponding to the variances of F1 and F2 This can be
achieved using the \part(A,B) function which partitions matrix A according to therowsand
columns specified inB. Matrix B must have four elements and these identify two corners of
the sub-matrix, so setting the elements of B to 9,9,10,10 will extract the 2x2 matrix from
element 9,9 to element 10,10. We know that thisisin fact the sub-matrix that we need by
looking at the variable labels for matrix Sin group 1. Variables F1 and F2 appear as the
ninth and tenth elementsof thelist of 1abels. A second matrix algebrastatement can be used
to create the sub-matrix and place it in matrix T.

It remainsto equate the diagonal elementsof T to unity. Thiswe can do using the d2v matrix
function which extracts the diagonal of a matrix to avector. It isthen simple to request a
constraint between this vector and a vector in which every element is 1.0, as shown in the
following lines of Mx script:

Title Add constraint to variances of F1 and F2

Constraint Ni=2

Begin Matrices = Group 1

P Full 1 4 ! for the partitioning part

UuUnit 12! Two 1.0 elements to equate to variances

End Matrices

I deduce from labels for S above that F1 and F2 are variables 9 and 10
Matrix P 9 9 10 10 ! to be used for partitioning

Begin Algebra;

R= (1-A)~&S; ! computes covariance of all variables, latent and observed
T= \part(R,P);! computes the sub-matrix of R from element 9,9 to 10,10
End Algebra;

Constraint \d2v(T) = U ; ! constrains the diagonal elements to equal U

Option df=-1
I add this df adjustment because really and truly all we have done
is put the same constraint in twice, because the paths from H to F1 and
from H to F2 are equal. A more efficient way would be to only constrain
one of the variances (F1 or F2) but this is an illustration.
End

The constraint syntax aboveinvolvesthe = operator because wewant an equality constraint.
For nonlinear boundary constraints one could use the < or > symbolsinstead.

Once the script has been modified, care must be taken not to overwrite it with a new script
from the diagram. If the diagram is modified, it is necessary to go through steps 2-4 again
to runit, otherwise the constraint group will lost. However, these steps are much easier the
second time because cut and paste can be used to get the constraint group from the earlier
script.
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A final remark concerns the use of option df=-1. By default, Mx will add one observed
statistic for each non-linear constraint imposed. This addition of a statistic is analogous to
the loss of a free parameter when two parameters are linearly constrained (equated) Mx
assumes that whatever non-linear constraints you are using effectively reduces the number
of parameters (or equivalently increased the number of observed statistics) inthe sameway.
In this example we did a silly thing, because both constraints were identical, so we really
gained no information by adding the second constraint. The df=-1 option corrects this
silliness.

Moderator Variables; Observed Variables as Paths

Aninteresting feature of M X isthat it allows the specification of modelsthat can differ for
every subject in the sample. In some sense, thisisthe extreme case of multiple groups, and
it has someinteresting statistical possibilities. For one, thistype of modeling is equivalent
to Hierarchical Linear Modeling (HLM) as specified by Bryk and Raudenbush (1992) and
others. This aspect of Mx has not received much attention, but perhaps that will change
now that the graphical interface facilitates the specification of some of these models.

We will illustrate the method with an uninspiring example of interaction terms in linear
regression. This example has the advantage that we know the answer and can compare it
with results from standard methods. The standard model of linear regression with
interaction that we shall useis

y " bx%bx%...b.x x.%e

where b, isthe interaction parameter of interest. In apath diagram, it is possible to model
these data by pre-computing x; xx, and fitting a model like the one shown in Figure 2.10.
An aternative approach would be to allow two pathways from x; to y, one having the
parameter b, and the other going through two paths, one with the parameter b, and the other
having the individual's data for x, onit. Thus, by path analysis, the model for y would be
equivalent to the model inthe equation. The question is, how do we get individual-specific
data onto the pathsin an Mx model ?
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File Contains Data for
PostScript Printers Only

Figure2.10  Linear Regression with Interaction Model with two independent variables,
X1 and X2 and their product X1* X2 and one dependent variable .

Raw data is essential for fitting these ‘data-specific’ models. As described in the Mx
manual, two basic forms of raw data may be read by Mx: variable length (‘VL’), and
rectangular (‘ Rect’). Rectangular isgenerally much easier to generate, and except for special
cases such as many siblingsin afamily or very serious missingness it is easier to use. A
.dat file with rectangular data might look like this:

1
I Rectangular data file created by Jane Datapro on Sept 31 1997
I using program /home/janedata/mxstuff/makemx.sas

1

Data NInput=4 NObservations=0

Labels X1 X2 X2d Y

Rectangular

1.234 2.345 2.345 3.456

4.321 3.210 3.210 2.109

End Rectangular

The ... indicate the remaining records of the dataset. Note the valuable comments at the
start of thefile - very useful for later retracing one's steps. The special feature of this data
fileisthat the second variable (Mod) has been included twice (Mod2 isidentical to Mod for
all cases). Weare going to make use of thisvariabletwice - onceasan independent variable,
and once as a moderator variable. In alinear regression we normally remove the main
effects of a variable before testing for the presence of interaction, hence the duplication.
Again we should remember that this simple example is for illustration, and that the same
thing could be achieved more easily with standard software. The more complex possibilities
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that such modeling encompasses could not be easily specified.

Close any diagramsthat you have open and start anew diagram ==, hit and open
the nonlin.dat file from the examples directory. Highlight the X1, X2 and Y variables and
click [New]. Then draw a covariance path between X1 and X2 and causal paths from these
variablesto Y. Then add alatent variable M by drawing acircle and draw paths from X1 to
it and from it to Y. Select the path from the dummy variable to Y and then hit
again. Highlight the remaining unmapped variable, X2d and click . Thisvariable has
now been mapped to the path from M to Y. The path should be the mapped variable color
(blue by default) and there should be a diamond surrounding the path label to indicate that
it ismapped to avariable. Thetotal effect from X1 to Y now contains both the linear and
the interaction terms. Finally add means to the model; for raw data we must always have
amodel for the means. In the end your figure should look something like (topologically
equivalent to) Figure 2.11.

File Contains Data for
PostScript Printers Only

Figure2.11 Linear Regression with Interaction; a moderated regression approach.
Variables X1 and X1d are identical in the dataset. Each individual has a
different model because they have different values of X1d.

themodel and be patient; fitting models of thistypeiscomputationally intensive. One
special thing to note about the printed output and the results on the diagram isthat the value
on the X2d path isthat of the last caseinthefile. The results should closely approximate
the values used for simulation, namely b,=.5; b,=.4; b,=.3; and e=.36 More interesting
models would involve moderation of the effects of latent variables, and they may be
specified in exactly the same way.
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What you will find in this chapter

# Genera rulesfor job structure and syntax
# Details on how to read data and select variables for analysis

Preparing Input Scripts

Comments, Commands and Numeric Input

O

Input files should be prepared with the text editor of your choice. If you use a
wordprocessor (such as Word Perfect or MS Word) the input file should be saved in DOS
text (ASCII) format.

Y ou may put comments anywhere in your input file using the character '".
The Mx command processor ignores:

C All charactersfollowing ! on any line

C Blanklines

C Anything after column 1200

Linesin Mx scripts may be up to 1200 characterslong on most systems; the IBM RS6000
compiler has an upper limit of 500 characters, which isthe limit for the AIX version.

The processor is aso entirely insensitive to case, except for filenames under UNIX.
Essentially, Mx readstwo things: keywordsand numbers. Unlessexplicitly stated otherwise,
thefirst two letters of akeyword are sufficient toidentify it. Keywordsare separated by one
or more blank spaces. Once the program has identified a keyword you can extend it to
anything you like as long as it doesn't have a blank character in it, so Data and
Data_silly words_ have the same effect.

Quite often, a keyword has the format KEY=123 where 123 is a humeric value to be input.
Thisiscalled aparameter. Mx ignoresall (including blanks) non-numeric charactersfound
between recognition of a parameter and reading a number, so that NI=100 and NInput_vars
a lot of words 100 have the same effect.

Note: The exception to thisrule is when it encounters a #define' d variable, which it will
accept instead of a number.

Syntax Conventions

The syntax described for commands follows these conventions:

C alternatives are represented by /

C optiona parameters or keywords are enclosed by { and }

C itemsto be substituted according to the specific application are enclosed by < and >
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Job Structure

Mx has been written for multiple groups, since genetically informative data generally
comprise information on different types of relatives which form distinct groups. At the
beginning of an Mx script, you have to say how many groups there are with a #Ngroup
statement. A group begins with atitle line that contains from 1 to 1200 characters’ for
reference. The second lineisthe Group-type line, and the group ends with an Output line.
What happens in between varies according to what type of group itis. Currently there are
3 types.

C DATA - containing data to be analyzed

C CALCULATION - allowing matrix operations for output or to simplify structure

C CONSTRAINT - for non-linear equality and inequality constraints between parameters

Any number of each type of group can be specified, in any order. Unless one of the
keywords Constraint or Calculation appears on the data line, Mx expects to read a Data
group. Effectively, there are 3 thingsto do:

C Supply the data

C Describe the model

C Reguest options

To do this, the input script will consist of groups, each having the following structure:

1. TITLE

2. DATA: indicate group type: data/cal culation/constraint

3. Read and select any observed data, supply labels

4. MATRICES: declare at least one matrix

5. Specify humbers and parameters, starting values, equality constraints

6. MODEL: define matrix formula: covariance/means/threshold/compute

7. Requestfit functions, statistical output and optimization options, multiplefit mode, save
matrices and job specification

8. END command

Steps 1-3 supply data and are described in Section 3.1-3.5, steps 4-6 define the model
(Section4.1-4.6), and steps 7-8 requestsoutput (Section 5.1-5.4). Constraint and calculation
groups do not read any data, so they omit step 3.

‘or only 500 on the IBM AlX operating system
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Single Group Example
For example, an input file may look like this:

#Ngroups 1
Simple MX example file
Data NObservations=150 NInput_variables=2
CMatrix 1.2 .8 1.3
Begin Matrices;
AFull 21
D Diag 2 2
End Matrices;
Specification A
12
Specification D
03
Start .5 all
Covariance_model A*A* + D /
Options RSiduals
End

Thiswould fit, by maximum likelihood (the default) afactor model to a covariance matrix
calculated from 150 observations of two variables. The model is shown as a path diagram
in Figure 3.1. Details of this example will be found in the following sections.

Y1 Y2
0 z

Figure3.1 Factor model for two variables. Free parameters are indicated by x, y and
z. Causal paths are shown as single headed arrows and correlational paths are shown as
double-headed arrows.
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#Define Command

Syntax:
#define <name> <number>
#define <$name> <string>

Number Substitution

Various commands and keywords used in Mx scripts search for a number. During this
search, if Mx encountersaletter it will read the word and check the dictionary for matching
#define'd words. If theword isfound, the appropriate number is substituted. If it hasn't, a
warning will be printed and the search for a number or a#define’ d variable will continue.
Care is needed with spelling!

In multivariate modeling it is quite common that the same matrix dimensions are used in
many different parts of a script. For example, in an oblique factor analysis, with 10
observed variables and 2 factors, the dimensions of the matrices needed to define the model
aredictated by these numbers. If matrix L containstheloadings, P the correlations between
the loadings, and matrix E the residuals, we would require L to be of order 10x 2, P to be
2x 2 and E to be of order 10x 10. We might specify thisin Mx with a script of the form

Title - factor analysis
Data NInput=10 NObservations=100
CMatrix File=mydata.cov
Matrices
A Full 10 2 Free
P Stan 2 2 Free
E Diag 10 10 Free
Covariance A*P*A" + E /
Start .5 all
End

However, this script could be made more general with a couple of #define statements:

#define factors 2
#define vars 10
Title - factor analysis
Data NInput=vars NObservations=100
CMatrix File=mydata.cov
Matrices
A Full vars factors Free
P Stan factors factors Free
E Diag vars vars Free
Covariance A*P*A" + E /
Start .5 all
End

Gainissmall inthissimple model - we change two numbersto change the number of factors
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and number of observed variables, instead of seven. With more complex models, the use
of #define can make scripts much simpler and more versatile.

String Substitution

If the word following the #define command begins with a$, therest of theline (or upto a
comment character ‘!") is taken to be the value of the #define'd variable. This type of
substitution is especialy useful becauseit literally changestheinput line. For example, if
the command

#Define $var BMI

is followed by the command
Select $var -T1 $var -T2 ;
then the line will become
Select BMI-T1 BMI-T2 ;

Note how the substitution has omitted the space character following $var in the input line.
If aspace character isrequired following a string variable, two spaces should be used in the
input. To append the contents of a string variable to a command, it is simply a matter of
entering the string variable name at the relevant position, for example, if $var is#define'd
as 4 the command:

Rectangular file=myfile$var.rec
will become

Rectangular file=myfile4.rec
Automatic #define

Two commands automatically #define variables. First, if the #repeat command (see page
XX) is used, two variables are automatically defined as the number of the current repeat.
Repeat_number is #defined as a numeric value, and $Repeat_number is a character string
of the repeat number in question. These features facilitate the use of the repeat number in
scripts, for example to read in different input files or to change the number of factorsin a
model.

Second, if the Definition command isused in raw dataanaysis, any definition variablesare
automatically #define'd as -1, -2 etc. (corresponding to their position in the Definition
command line) to simplify specification of matrices with definition variables. Therefore,
syntax of the form:

Definition age sex ;
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followed later in the script by a matrix specification command:
Specify C age sex

would appropriately specify C as having ‘ parameters’ -1 and -2 which correspond to the
definition variables Age and Sex.

#1f, #Elsaif, #Else and #Endif Commands

Syntax:

#if <condition>
#elseif <condition>
#else

#endif

Conditiona compilation of parts of Mx scriptsis enabled through the #if, #elseif, #else
and #endif commands. The<condition> part of the command usesvariablesthat have been
#define'd as either strings (e.g. #define $model Onefac) or as numeric values (such as
#define nvar 3). Testsof numeric conditions may be =, >, or <, which may be optionally
preceded by ” to indicate not equal, not greater than (which is equivalent to less than or
equal to). For example, the following code might be used to declare matrices differently
according to the type of model required:

#if $model = orthogonal

S identity nfac nfac

#elseif $model = oblique

S symmetric nfac nfac

#else

Oops! Error: $model must be #defined as either orthogonal or oblique
#endif

Note the the #if command needs to be accompanied by an #endif command and that the
condition operators have a space before and after them. Commands of this type make it
possible to write Mx script ‘templates’ which contain code normally created by the more
advanced user and which does not change from one use to the next, along with a ‘ header’
filewhichthelessadvanced user canreadily edit using the M x GUI MxProject-Header Edit
menu system. An example script pair of this sort is described on page 150.

#Repeat Command

Syntax:
#repeat <number>
#endrepeat

The#repeat command isnormally used to read and execute the same script segment severa
times. Although doing so might seem futile, it is possible that the script contains elements
that change each timethe programisrun. One example would be where aSystem command
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is executed in a script - perhaps to simulate data with an external program which changes
the input data for the Mx script. A second example is where the automatically #define'd
variables $repeat_number and repeat_number, are used to make the script to read different
data files on successive runs. Third, the $repeat_number variable might be used in
combination with a conditional statements (see above) e.g.,

#if repeat_number = 1

I Lines of Mx script to be used the first iteration go here
#elseif repeat_number = 2

I Lines of Mx script to be used the second iteration go here
#else

Lines of Mx script to be used for iterations 3 onwards go here
#endif

Notethat the#repeat command needsto be accompanied by an#endrepeat commandinthe
samefileand not in a#include file. Alsonotethat the#define, #if and #repeat commands
can be used anywhere in ascript. An example script using the#if and #repeat commands
is described on page 146.

System Command

Syntax:

System <commands to be executed>

The System command allows the MX script to execute external programs by calling the
system. Under unix, the external programs will be run with the user's default shell. This
command can be useful to manipulate data between stacked problems, e.g., reformatting
data output by the first job in afile so that it can be read by the second job in that file.
Another usewould beto have an external program that simulatesdata, and to call the system
to simulate data prior to running an M script that usesthese data. 1n conjunction with the
#repeat command, multiple simulations could be run. For example,

#repeat 200

System runsim

Title Mx script to fit model to simulated data
I rest of job goes here

End

#end repeat

would run an external program called runsim (under DOS/windows this could be a batch
file, or under unix it might be a shell program) and then run the Mx script, and repeat this
exercise 200 times.
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M atrices Declar ation

Syntax:
Begin Matrices; or Matrices= {Group <n>}
<matrix name> <type> <r> <c> {Free/ Unique}

End Matrices;

Matrices must be declared after reading any datafor the group, and befor e assigning values
or parameters to matrix elements. All declared matrices initially have zero for each
‘modifiable’ element. By default, all matrix elements are fixed. If the keyword Free
appears, each modifiable element has a free parameter specified, starting at the highest
parameter number yet specified below 10,000. If thekeyword Unique ispresent parameters
are numbered from 10,000 onwards. Unique helps to keep parameters from accidentally
being constrained with subsequent specify statements. See page ? for more details on
declaring matrices.

Matrix Algebra

Syntax:
Begin Algebra;
<matrix name> = {funct} <matrix name> {operator <matrix name> };

End Algebra;

Algebrasections provide asimple way to evaluate matrix algebraexpressions, as shownin
Appendix C.

In many cases breaking up a complicated matrix algebra expression into smaller parts can
improve readability or efficiency or both. For example, the matrix formula
(1-A)"*S*(1-A) " will find the inverse of twice. When matrix A is small the loss of
efficiency will be negligible - the extra time taken to re-program will be greater than any
gained in execution time. For large A, the component (I-A)™* can be computed as an
intermediate step so that the cpu-intensive matrix inversionisonly carried out once and we
have acompact and readable script. Algebramay be thought of asa specia form o f matrix
declaration. Each matrix that appears on the left hand side of the = sign is newly defined
in thisgroup (it must not have been previously defined). Note that matrix B, defined in the
first line of algebra, may be used in subsequent lines.
Begin Matrices;

A Full 10 10

S Symm 10 10

I Iden 10 10
End Matrices;
Begin Algebra;

B=(-A) ;

C = B*S*B" ;
End Algebra;
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3.2 Group Types

Every group has to begin with a Title line and a Group-type command. In a data group,
these statements may befollowed by reading of data. These commandsaredescribedinthis
section.

TitleLine

Thetitlelineis purely for the user's reference, it is printed when Mx prints the parameter
specifications and the parameter estimates for a group. It is most useful when there are
multiplegroups. Thetitlelineisrecognized by itslocation (the beginning of agroup) rather
than by a keyword at the start of aline.

Group-typelLine

Syntax:
Data/Calculation/Constraint {NGroups=n NInput_vars=n NObservations=n}

where Calculation defines a calculation group and Constraint a constraint group, the
default being a Data group

Every group must have adataline. It has a number of parameters to indicate

i. what kind of group is being input

ii. ifitisthefirst group, NGroups, the number of groups, and

iii. various characteristics (the number of input variables NInput_vars and the number of
observations NObservations) of the data to be analyzed, if any.

The parameters may be specified in any order, and are summarized in Table 3.2. Notethat
Data groups must haveNInput_vars and NObservations keywords. Constraint groupsonly
require NInput_vars, and Calculation groups need no parameters except NGroups if it isthe

first group.

Table3.2 Parameters of the group-type line in Mx input files.
Parameter Function Required for group(s)
Data Specifies adata group Data
Calculation Specifies a calculation group Calculation
Constraint Specifies a constraint group Constraint
NGroups Number of groups First group
NInput_vars Number of input variables Data, constraint
Nobservations Number of observations Data
Nmodel Number of models Weighted likelihood*

* required for fitting mixture models only, see section 4.3 on page 76
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3.3 Commandsfor Reading Data

Covariance and Correlation Matrices

Syntax:
CMatrix/KMatrix/PMatrix {Full} {File=filename}

In adata group, a covariance matrix may be read using the keyword CMatrix. By default,
CMatrix expectsto read the lower triangle of an NInput_vars x NInput_vars matrix, from
theinput file. If the keyword Full appears, then afull matrix will be read. The matrix is
read in free format, that is, the numbers are expected to be separated by one or more blank
spaces or carriage returns. If the keyword Fi le appears, then Mx will read the data from
afile. Thislatter method is generaly to be preferred, since it keeps the datain one place.
If the data are changed, it is not necessary to change every script that uses these data.

A FORTRAN format [in parentheses, e.g., (6F10.5)] for reading data must be thefirst line
of adatafile. If thefirst linejust has* or (*) on it, the data are read in free format, i.e.
numbers are separated by one or more spaces or new line characters.

Correlation matrices (KMatrix) and matrices of polychoric or polyserial correlations
(PMatrix) areread inthe sameway ascovariance matrices(CMatrix). Althoughthediagonal
elements of these matricesareall 1.0, and could in principle be omitted, they are needed for
MXx to read thefile correctly. See page 126 for an example of special methods required for
maximum likelihood analysis of correlation matrices.

Asymptotic Variances and Covariances

Syntax:
ACov/AvVar/Alnv {File=filename}

In order to use asymptotic weighted least squares or diagonally weighted least squares ( see
p. 85) it is necessary to read aweight matrix. For compatibility with PRELIS (Joreskog &
SOrbom, 1986; 1993), MX expects to receive aweight matrix multiplied by the number of
observations. If the File= option is used, a PRELIS output file (created with the
SA=filename or the SV=Ffilename PRELIS commands) may beread. By default, Mx expects
to receive an asymptotic weight matrix (ACov) whose size depends on (i) NInput_vars and
(ii) whether acorrelation matrix or covariancematrix hasbeeninput. If NInput_vars=k, then
if CMatrix has been input, the number of rowsin ACov is

p " k(k%l1)/2
or if PMatrix or KMatrix have been input, the number of rowsin ACov is
g~ k(k&l1)/2.

The weight matrices can thus be very large - of order
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p(p%1)/2 or q(q%l)/2

If you use PRELIS, please be sure to use PRELIS 2 instead of PRELIS 1, as the
off-diagonal elementsof theasymptoticweight matricesproduced by PREL S 1 appear quite
inaccurate at the time of writing (PRELIS 1.20 and earlier). Later versions of PRELIS
output the file in binary format, which must be changed with the bintoasc.exe or
bintoggl .exe utility supplied with PRELIS.

An ACov line makes AWLS the default method of estimation for that group. If AWLSis
requested on the Options line in agroup without an ACov, and error will result. Similarly,
DWLS isdefault if Avar isread.

O Notethat inverting the asymptotic covariance matrix can take an appreciable amount of time
for large problems. Two facilities are available to combat this problem. First, the inverse
of the matrix can be read instead. A simple Mx job could be used to invert and save the
inverse, for example:

Commands to invert a 325x325 asymptotic weight matrix
Data Calculate NGroups=1
Matrices
P Symm 325 325
Compute P/
Matrix P File=weight.asy
Output MX%E=weight.inv

The inverse of the asymptotic matrix (Alnv), saved in the fileweight. inv could be used in
place of the matrix itself, with acommand of the form: Alnv Full File=weight.inv. The
Full keyword is essential here because Mx is agnostic about the symmetry of square
matrices created in calculation groups. It is safer to assume that it is not symmetric to
maintain consistency across applications. The second, alternative approach is to use the
binary save feature described on page 105, which saves the whole job specifications.

A common error in reading data with CMatrix or ACov commands is to read them as full
matrices when they are stored as symmetric, or viceversa. Mx attemptsto be abit smarter
about this process. If auser forgets to put the Full keyword on the CMatrix line, but Mx
detects an Mx-style data file that was saved in full format, it will read it as full instead.

Variable Length, Rectangular and Ordinal Files

Syntax:
VLength/Rectangular/Ordinal {File=filename} {Highest <numlist>}

Mx will read two types of raw data for multivariate normal maximum likelihood analysis.
Rectangular readsregular data, i.e. where every observation has the same number of input
variables (NInput_vars on theData line). Missing values may be specified with a. (dot) or
another code (seeMissing command on page51). Thisisappropriateif therearerelatively
few missing data, or if missing data have been imputed.
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VLength is a variable length record reader, which allows reading of raw data where there
may be many missing values. The default (and mandatory) format for these dataisfree. A
line with comments or * can be placed at the start of the file, but it will be ignored by Mx
except for printing awarning and the lineitself inthe output file. The structure of avLength
fileis:

C  number of input variables (k)

C identification codesfor the k variables

C observed datafor the k variables.

For every case, the number of input variables must beon aline by itself. Theidentification
codes must beintegersthat correspond to codes read by the 1Codes command (see page 83).
For example, afile might contain the following:

3

123 .33 .62 .95
2

231.4-2.2

1

2 .37

Thisexamplereads 3 variablesfor thefirst observation, with identification codes 1 2 3, and
datavalues.33 .62 and .95. The second observation has no datafor variable 1, but supplies
datafor 2 and 3, while the third supplies datafor variable 2 alone. By default, data of this
type are fitted using the raw maximum likelihood fit function (see page 88).

It is quite simpleto prepare VLength fileswith SAS or SPSS. However, caution should be
exercised with SASwhich usesa. for amissing value. Depending on the operating system
under which you are running Mx, thisdot may produce afileread error or beread asazero.
Here are afew lines of SAS code to output a VLength file from an array of two variables
v{2}, either or both of which may bemissing. Thethird and fourth lines need to be modified
to declare the length of the array and to copy the required variables to the array into it.
Certain applications may a so need to change the format of the PUT statement that writesthe
data values.

DATA ONE; SET ZERO;

COUNT=0; NVAR=2; /* Number of variables in total !!Change!! */
ARRAY V{2} AT1 AT2; /* Set up array for variables !lChangel! */
DO I1=1 TO NVAR; /* Count the non-missing observations */

IF V{I} NE . THEN DO; COUNT+1; END; END;

FILE MXVLFILE; /* Filename for future Mx input !!Change!! */
IF COUNT NE O THEN DO; /* Write observations if there are any */

PUT COUNT;

DO I=1 TO NVAR;

IF V{I} NE . THEN PUT I @Q; /* Write the identifiers */

END; PUT;

DO I=1 TO NVAR;

IF V{I} NE . THEN PUT V{I} 13.6 +1 @@; /* Write the data values */
END; PUT;
END;
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Note: format statements are not valid for either rectangular or VL files,

Similar to the rectangular command to read raw continuous data, the Ordinal file statement
reads in ordinal data from arectangular file. By default, a. (dot) character separated by
spaces is recognized as a missing value, and this default may be changed by inserting a
Missing command before theOrdinal statement. Ordinal datamust be specified by integer
categories, with the lowest category zero. The highest category in the ordinal data is
automatically detected by MX, but in some cases, especialy multigroup analyses, it is
necessary to override this default with auser specified value. Thelargest valuein the data
file must not exceed the corresponding value in the highest statement.

Missing Command

Syntax:
Missing=<code>

The missing command may be used to supply acharacter string other than . (dot) to be used
for missing values, e.g. Missing=N/A. Notethat M X respondsto the exact character string,
and not the numerical value of that string. For example, if Missing=-1.0 hasbeen specified,
then neither -1 nor -1.00 would be recognized as missing.

Definition Variables

Syntax:
Definition_variable <label>

Specification <matrix name> {element list} label {element list}

This feature allows ‘multilevel’ statistical analyses with VL or rectangular data files.
Essentially, some variables may be assigned as definition variabl es which can then be used
in constructing the model. Definition variables are automatically #define’d so that their
namescan beusedin Specify statements. A matrix containing adefinition variable changes
for every case in the raw data file. See page 139 for an example that alows continuous
moderators - effectively as many groups as there are cases in the data file. Labels should
be provided for al variables before using the definition statement.

Contingency Tables

Syntax:
CTable <r> <c> {File=filename}

Mx will read contingency tablesof order r by c. NInput_vars must be 2 for agroup reading
acontingency table. Both r and ¢ must be greater than 1 but they do not have to be equal.
A contingency table contains frequency data (or counts) such that each cell C; indicatesthe
number of observations falling in row category i and column category j. Normally, the
frequencies supplied should be greater than or equal to zero.
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If frequency dataare read directly into the script, they need to start on anew line, following
theCTable <r> <c>line

Mx automatically handlesincomplete ascertainment which the user can flag by supplying
anegative number for cellsthat have not been ascertained (see example on p. 92). Instead
of modeling means, the placement of thresholds on the underlying liability distribution is
specified with the threshold statement, as shown on page 75.

The ordering of the categories should follow the natural numbering of the rows and
columns, so that atable with astrong positive correl ation between the variableswould have
large frequencies on the leading diagonal. Supplying a CTable changes the default fit
function to the likelihood of observing the frequencies assuming a bivariate normal
distribution of liability underliesthe observed presencein acell. Seepage 91 for detailson
fitting structural equation models to contingency table data.

Syntax:
Means {File=Ffilename}

A vector of means, length NInput_vars may be read. When fitting models by maximum
likelihood, amatrix formulafor the predicted means may be provided. Thejoint likelihood
of the means and the covariancesis maximized, enabling tests of hypotheses about equality
of means across variables or across groups.

Higher Moment M atrices

Syntax:
Skewness/Kurtosis {File=filename}

Matrices of skewness and kurtosis may be read with these commands. These are provided
for future developmentsin Mx that will allow model fitting to thesetypesof datain addition
to means and covariances. Currently there is no facility to use matrices read in this way.
However, model fitting with higher moments could be done with user-defined fit functions
(see page 92).

3.4 Labd and Select Variables

Labeling Input Variables

Syntax:
Labels <list of labels>

Labelsmay begiven for the observed databy issuing aLabel command, beforetheMatrices
command. These labels may be used to select variables, for example:
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Data NGroups=1 NInput_vars=3 NObservations=171
CMatrix File=Cov.mat

Labels ALC1 ALC2 AGE

Select ALC2 ALCL /

would read the lower triangle of a 3x3 covariance matrix from the file Cov.mat, and label
thevariablesALC1 ALC2 and AGE. ThevariablesALC2 and ALC1 arethen selected for analysis,
changing their original order. See also page 82 for details on labeling specified matrices.

Sdlect Variables

Syntax:
Select <numlist or varlist> /

Variables may be selected for analysis using the Select command. The command may be
used to reorder data or to pick areduced number of variablesfor analysis. In either case, a
; or / must end the command. Select acceptsintegerswhich correspond to the order of the
input variable. More conveniently, Select will operate on variable labels (see page 52).
The command will work with raw data as supplied by the Rawdata or VLength commands
(see pages 88 and 49).

Sdlect If

Syntax:
Select If <label> {< = > 7< "= ™} value/
where ” denotes not.

Select If may be used in conjunction with raw data (VL or Rectangular) to select a subset of
thedatafor analysis. Thisfeatureisuseful to eliminate outliersform araw dataset, if acase
number or id variable has been included. For example,

Rectangular File=mydata.rec

Labels casenum BMI skinfoldl skinfold2;

Select If casenum ~=253;

Select BMI skinfoldl;

might be used to eliminate all cases where casenumber is 253.

Select with Variable Length Data

In combination with the VL or rectangular data, select changes the identification codes to
consecutive integers starting at 1. For example, if the following Select line was read:
Select 342/

aVLength record of the form:

4

1234.1.2 .3 .4

would be changed to:

3

123 .3 .4.2
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thusthe observation originally numbered 3 hasbecome observation 1, observation numbered
4 hasbecome observation 2, and observation numbered 2 hasbecomeobservation 3. Select
will automatically reduce the number of datavectorsif there are no matchesfor aparticular
datavector and the codesin the Select line. Thefinal number of vectors and observations
used in the analysisis given in the output file.

Select cannot contain more numbers than the NInput_vars specified on theData line. To
do so would necessarily result in asingular correlation or covariance matrix. Likewise, the
same variable cannot be selected twice.

3.5 Calculation and Constraint Groups

Theuse of calculation and constraint groupsisvery similar the use of groupsthat read data.
All threetypes of group are fully command compatible with the exception of commandsfor
reading data, which can be used by data groups alone.

Calculation Groups

@

The keyword Calc on the Group-type line indicates that the group is used for calculation.
The calculated matrix formula from such a group is printed if the RSiduals command
appears on the Options line. There are no restrictions on the type and dimensions of a
matrix than can be produced with this command (other than memory limits). The result of
the calculation may be used in later groups by using the =%En syntax when specifying a
matrix, where n is the number of the calculation group. Note that thereisastrict ordering
within the input file; results cannot be taken from a calculation that has not yet occurred.

The Calc group provides a facility for printing out results of matrix operations. Any

calculation group that is not followed by a constraint or data group is not calculated until
the end of optimization, thus avoiding unnecessary waste of computer time.

Constraint Groups

Constraint groups may be used toimpose nonlinear equality or inequality constraintsamong
the parameters. Three specia operators may be used to impose constraints between
matrices. For example, suppose we wish to imposethe constraint that x>+y? =1 wherex has
parameter specification 1 and y has parameter specification 2. A constraint group to
accomplish this might be:

Constrain parameters to ensure that x*x+y*y=1
Constraint_group

Begin Matrices;

AFull 21

I Iden 11

End Matrices;

Specify A 1 2 ! Put parameters 1 and 2 in to A
Constraint A’*A=1; !lnner product works out x*x+y*y
End Group;
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If we wanted to impose the inequality constraint that x*+y? >1 instead, then we would use
the > symbol in the Constraint statement. Likewise, we could use < to specify aless than
inequality. Only one <, > or = symbol may be used in a constraint statement. To specify
range constraints such as .5< x*+y? <1 it is possible to specify both constraints within the
same constraint statement by concatenating them as two inequality constraints:
Constrain parameters to ensure that .5 < x*x+y*y <1
Constraint_group
Begin Matrices;
AFull 21
I Iden 11
HFull 11
End Matrices;

Matrix H .5
Specify A 1 2 I put parameters 1 and 2 into A

Constraint (A”*A_
H) < (I
A’*A); 1 Inner product works out Xx*x+y*y
End Group;

Note that the constraints are made element by element. Using option RS we can see the
results of imposing equality or inequality constraints.

Whenever MX encounters aconstraint group, it increases the number of degrees of freedom
by the number of nonlinear constraints. Thisincrease in the number of statistics is based
on the assumption that each constraint identifies a parameter, which may not always be
correct. The DF parameter on the Options line (see page 95) may be used to correct for
failures of this assumption.

NPSOL, the optimization routine, treats constraintsin an intelligent fashion; if it finds the
derivatives of the constraint functions with respect to certain parametersto be zero, it does
not cal culate them during optimization. Thismeansthat if some of the specified constraint
functions are always zero, little additional computational cost isincurred.

- Careisneeded to make surethat the constraints can be satisfied. |f thereisno feasible point
for the constraints - for example, one of them always takes the value .5 - an IFAIL=3 error
message isreturned. Oneway to avoid such errorsisto start optimization at a place where
the constraints are satisfied.
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4 Building Modelswith Matrices

What you will find in this chapter

How to declare matrices and |abel them

The structure of the different types of matrix
What the matrix operators and functions do
When and where to use matrix formulae
Therole of different types of group

HHEFHH

All groups, bethey constraint, calculation, or data, require at least one matrix in order to do
anything. The next few sections describe thetypes of matrix that may be used, the operators
that act on and between them, and ways of putting parameters and numbers into them.

4.1 Commandsfor Declaring Matrices

M atrices Command

Syntax:
Begin Matrices {= Group <n>};
<matrix name> <type> <rows> <columns> {= <name> <group> / Free, Unique}

<matrix name> <type> <rows> <columns> {= <name> <group> / Free, Unique}
End Matrices;
where n is a previous group number

A group must have the 3-letter MAT command, followed by at least one matrix definition.
Asused throughout this manual, we recommend using non-abbreviated commands, such as
Matrices.

Matrix names are restricted to one letter, from A to Z. The same letter may be used for
different matricesin different groups. If amatrix isdeclared twice, awarningisprinted and
only the second declaration is kept.

O Note that matrix definitions are group specific; for example, matrix A in group 1 does not
have to be the same type or size as matrix A in group 2.

If thekeyword = followstheBegin Matrices command, all matricesinthat earlier group are
automatically declared in the present group.
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Matrix Types
The type of amatrix may be one of the 12 forms described in Table 4.1, and its row and
column dimensionsare specified with integers. Oncethetypeand size of amatrix hasbeen
defined, it cannot be changed.

Table4.1 Matrix types that may be specified in MX.

Type Structure Shape Number of
Free Elements

Zero Every element is zero (null matrix) Any 0

Unit Every element is one (unit matrix Any 0

Iden | dentity matrix Square O

I1Zero | dentity|Zero partitioned matrix Any 0

Zlden Zero|ldentity partitioned matrix Any 0

Diag Diagonal matrix Square  r

SDiag Subdiagonal (zeros on & above diagonal) Square  r(r11)/2

Stand Standardized (symmetric, oneson diagonal) Square  r(r!1)/2

Symm Symmetric Square  r(r+1)/2

Lower Lower triangular Square  r(r+1)/2

Full Full Any rxc

Computed Equated to formulain previous group Any 0

Note: number of free elements indicates the number of elementsthat can be altered by the
user, wherer isthe number of rows and ¢ the number of columns of the matrix.

Equating Matrices acr oss Groups

Syntax:

<matrix name> <type> <r> <c> = <matrix name> <group number>

or

<matrix name> <type> <r> <c> = <special quantity> <group number>

Optionally, a matrix may be constrained to equal a matrix previously specified. For
example, we could use the command

A Symm 3 3 = Y2

to equate matrix A inthisgroup to matrix Y in group 2. In this example the current group
must be number 3 or greater.

Several additional options allow constraints to other quantities found in previous groups,
such as the observed or expected covariance matrix. For example, the command
B Full 2 2 = %E1

equates matrix B in this group to the expected matrix of group 1.

The special codesfor constraining amatrix to equal those defined or computed in previous
groups are shown in Table 4.2. These add to the flexibility of Mx.
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Table4.2 Syntax for constraining matrices to specia quantitiesin previous groups.
Symbol Matrix Quantity Dimensions
%0n Observed covariance (data) matrix NI NI,
%EN Expected covariance matrix NI NI,
Y%Mn Expected mean vector IxNI,
%Pn Expected proportions under bivariate normal NR,XNC,
%Fn Function value 1x1

Note: NI, isthe number of input variables in group n following any selection; NR and NC
are respectively the number of rows and columns in a contingency table, and may be
regquested only if group n has such atable.

Itisespecialy important to notethat none of the%E, %0, %M, %F and %P equalitiesmay refer
to groups that appear after the current group. When matrices are constrained to be equal
in this fashion, the type and row x column dimensions of the earlier matrix are retained. If
the two specifications do not agree, awarning is printed. Both the number of rows and the
number of columns must be supplied for square matrices, but only thefirst isused to define
the size of the matrix.

Equating Matricesto Computed Matrices

Syntax:
<matrix name> computed {<r> <c>} = <matrix name> <group number>

When matrices are declared with the Matrices command, a specia type, computed, may be
used to equate to amatrix which was defined within the algebra section of aprevious group.
Row and column dimensions are set to those of the previoudy cal culated matrix, and may
be omitted when declaring a matrix as computed.

Equating All Matrices acr oss Groups

Syntax:
Begin Matrices = Group <number>;

The usual equating of matrices across groupsis supplemented by a global facility. All the
matrices defined in an earlier group are made available to the current group. Thisincludes
both matrices that are explicitly declared and those that are created in aBegin Algebra;
...End Algebra; section.

Free Keyword

All changeable elements of matrices areinitialized at zero and are fixed parameters, unless
the Free keyword isused, in which case each changeable element is specified asa different
free parameter. Examples of the results of using the keyword Free are shown in Table 4.3.
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Table4.3 Examples of use of the Matrices command to specify the dimensions of
different matrix types. Thekeyword Free following each command makes each modifiable
element in the matrix a separate free parameter, numbered in order as shown in the second
column. In the third column, values of elements are shown, with ? representing a free
parameter.

Example command Specification Vaues
Matrix

A Zero 2 3 Free 000 000
000 000

B Unit 2 3 Free 000 111
000 111

C Iden 3 3 Free 000 100
000 010
000 001

D Izero 2 5 Free 000O00O 10000
00000 01000

E Ziden 2 5 Free 00000 00010
00000 00001

F Diag 3 3 Free 100 200
020 07?0
003 0072

G Sdiag 3 3 Free 000 000
100 200
230 27?20

H Stand 3 3 Free 012 1?7?
103 217
230 277?21

I Symm 3 3 Free 124 27?27
235 299
456 299

J Lower 3 3 Free 100 200
230 27?20
456 299

K Full 2 4 Free 1234 2?2727
5678 292929

More detail on specifying parametersin matricesis givenin Sections 4.4 to 4.5.
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4.2 Building Matrix Formulae

Readers unfamiliar with matrix algebra may benefit from reading Appendix C, where
examples and exercises are given. Readers familiar with matrix algebra may wish to
examine Tables 4.4 and 4.5 for the variety of available operators and functions, and usethis
section for reference.

Matrix Operations

In ordinary algebra, operators such as + !x and + have an order of evaluation established
by convention. Multiply and divide are done before addition and subtraction. Multiply and
divide are done in left-to-right order if they appear consecutively, as are addition and
subtraction. We could say then, that x and + have priority 1, and + and ! have priority 2.
Default priorities can be changed with the use of brackets () which specify that operations
inside the brackets are done first. For example, a+bx c=a+bc whereas (a+b)x c= ac+bc.

A similar hierarchy has been established for the matrix operatorsin Mx, and it too may be
revised by the use of brackets. Table 4.4 shows the matrix operators and their (default)
order of evaluation. Matrix algebra is subject to certain rules of conformability -
reguirements about the size and shape of the matrices being multiplied etc. Theserulesare
listed in the right hand column of table 4, where r, denotes rows in matrix A and cg
columnsin matrix B. The number or rows of amatrix (r,) and the number of columns of
amatrix (c,) are known asitsdimensions. Two matrices A and B wherer,=rg and c,=c;
are said to have the same dimensions.

Tabled.4 Matrix operatorsavailablein M x, together withtheir priority for evaluation.
See also Table 4.5 for matrix functions.

Symbol Name Function Example Priority Conformability
Inverse Inversion A" 1 r=c
N Transpose Transposition AN 1 none
A Power Element powering A"B 2 none
* Star Multiplication A*B 3 =
. Dot Dot product A.B 3 ry=rg and c,=Cg
@ Kron Kronecker product A@Q@B 3 none
& Quadratic  Quadratic product A&B 3 CA=Ig=Cg
% Eldiv Element division A%B 3 r,=rg and c,=Cg
+ Plus Addition A+B 4 r,=rg and c,=Cg
1 Minus Subtraction AlB 4 ry=rg and c,=Cg
| Bar Horizontal adhesion  A|B 4 rA=rg
Under Vertical adhesion A B 4 CA=Cg

A line has been drawn between the first two operators (Inverse & Transpose) and the rest
becauseinverse and transpose are unary operators, that is, they operate on one matrix. The
rest form a single new matrix from two matrices, and are thus binary operators. These
operators are now described in detail.



62

Building Models with Matrices

Inverse”

Only square matrices may beinverted, but they may be either symmetric or non-symmetric.
Theinverse of matrix A isusually written A*'* and impliesthat AA'* = A'* A = | where|
isthe identity matrix. To request an inverse with Mx, we use the symbol ~. If theinverse
does not exist (possibly due to rounding errors), Mx will terminate with an error message.
Some precautions can be taken to avoid this, such as supplying starting values that allow
inversion, or putting boundary constraints on parametersto prevent their taking val ues that
would lead to a singular matrix.

Transpose N
Any matrix may be transposed. The transpose of A iswritten AN. The order of the matrix
changes from rxc to cxr, as the rows become the columns and vice-versa.

Power *

All the elements of amatrix may be raised to a power using the” symbol. Essentidly, this
operator worksthe sasmeway asthe Kronecker product (see below), but elementsof thefirst
matrix are raised to the power of those in the second matrix instead of multiplied by them.
It is possible to use negative powers and non-integer exponents to indicate reciprocal
functions and roots of elements, but it is not possible to raise a negative number to a
non-integer power. For example, the cube of every element of amatrix would be obtained
by A7B if B wasa 1x 1 matrix with 3 asits only element.

For example, the matrix power A*B is ) ]
a% a" b9 b"

a' al b'" bl

ab
g h cd ¢ch d9 df
cdf ~ |0 | .
e f I c' ¢! d' d!

ed eh fo fh

el el fl fl]

Multiplication *

* or ‘Star’ is the ordinary form of matrix multiplication. The elements of A(mxn) and
B(nx p) are combined to form the elements of matrix C(mx p) using the formula

C; " G-q A, X B,;- Matrices multiplied in this way must be conformable for
multiplication. This means that the number of columns in the first matrix must equal the
number of rows in the second matrix.

For example, the matrix product A*B

ab axg % bxi axh % bxj ag % bi ah % bj

c d ( [g ] " olexg % dxi cxh % dxj| * |cg % di ch% d
[

e f : exg % fxi exh % fxj ge% fi eh % f
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Dot product .

Dot is another type of matrix multiplication, which is done element by element. For two
matricesto be multiplied in thisway, they must have the sasmedimensions. Elements of the
dot product are described by the formula C;; = A;xD;.

For example, the dot product A.D is

ab g h axg bxh
cd| . |i j| " |cxi dxj
K |

e f exk fxl|

Kronecker product g

Theright Kronecker product of two matrices A g B isformed by multiplying each element
of A by thematrix B. If A isof order (mxn) and B is of order (px ), then the result will be
of order mpxng. There are no conformability criteriafor thistype of product. In M X input
filesthe symbol q is denoted with the symbol @.

For example, the Kronecker product A q B is

-axg axh bxg b><h-
axi axj bxi bxj

ab
g h cxg cxh dxg dxh
cdlqg | .|° . . . .
i cxi cxj dxi dxj
e f

exg exh fxg fxh

| exi exj fxi fxj ]

Quadratic product &

Many structural equation and other statistical models use quadratic products of the form
ABA’, and the quadratic operator is both a simple and efficient way to implement
guadratics. Notethat E can be any shape, but to be conformable for quadratic product the
matrix B must be square and have the same number of columns as the matrix E.

For example, the quadratic product E& B

h
9.}(
i

a

[a b] ( " [a2g%abi%abh%b? |
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Element division %

% does element by element division. For two matricesto be divided in thisway, they must
have the same dimensions. Elements of the result, C are described by the formula
C;=A; +D;. If any element of D is zero, the corresponding cell in the result matrix is set
to 10®.

For example, the division A%D is

ab g h a+g b+h
cdl % |i j| " |c+i d+j
e f k | e+k f=+l

Addition +
Addition of matricesis performed element by element. For two matrices to be added, they
must have the same dimensions. Elements of the sum, C are described by the formula

For example, the sum A+D is

ab g h a%g b%h
cd|l % [i j| " |c%i d%j
e f k | ek f%l

Subtraction 1

Subtraction of matricesis performed element by element. For one matrix to be subtracted
from another, they must have the same dimensions. Elements of the difference, C are
described by the formulaC; = A; 1 D;,.

For example, the difference AID is

ab g h alg b!h
cdl ¥ [i j| ® |cti dUj
e f k | elk fUl

Note that in Mx thereis aso a unary minus operator, so that an expression such as 1A is
legal. This operation changes the sign of each element of A.
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Horizontal Adhesion |

Bar alows partitioning of matrices. Itsoperationiscalled horizontal adhesion because A|D
isformed by sticking D onto theright hand side of A. For two matricesto be adhered in this
way, they have to have the same number of rows. If A (mxn) and D (mx p) are adhered, the
result C is of order (mx (n+p)).

For example, the operation A|D is

ab g h abgh
cd| | |i j| ® |Jcdij
e f k | e f k|

Vertical Adhesion _

Underscore allows partitioning of matrices. Itsoperationiscalled vertical adhesion because
A_D isformed by sticking D underneath A. For two matrices to be adhered in this way,
they must have the same number of columns. If A (mxn) and D (pxn) are adhered, the
result C is of order ((m+p)xn).

For example, the operation A_D is

[S—

_ab_
cd
ab g h
] e f
cd| _ i j| * h
e f k | g
i
|k

Matrix Functions

A number of matrix functions, shown in Table 4.5, may be used in MX. These are useful
for in specialized applications involving user-defined fitting-functions (see p. 92).
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Table4.5 Matrix functions availablein Mx.
Restrictions are on rowsr and columns ¢ of input argument.

Keyword Function Restrictions  Result Dimensions
\tr() Trace r=c 1x1

\det () Determinant r=c 1x1

\sum( ) Sum None 1x1

\prod( ) Product None 1x1

\max( ) Maximum None 1x1

\min() Minimum None 1x1

\abs() Absolute value None rxc

\cos() Cosine None rxc

\cosh() Hyperbolic cosine None rxc

\sin() Sin None rxc

\sinh() Hyperbolic sin None rxc

\tan() Tan None rxc

\tanh() Hyperboalic tan None rxc

\exp() Exponent (e") None rxc

\In() Natural logarithm None rxc

\sgrt() Square root None rxc

\d2v() Diagonal to Vector None min(r,c)x1
\v2d() Vector to Diagonal r=1orc=1 max(r,c)xmax(r,c)
\m2v() Matrix to Vector None rexl

\vec() Matrix to Vector* None rexl

\vech() Lower triangle to Vector None rexl

\stnd() Standardize matrix r=c rxc

\eval() Real eigenvalues r=c rxc

\evec() Real eigenvectors r=c rxr

\ival() Imaginary eigenvalues r=c rxl

\ivec() Imaginary eigenvectors r=c rxr

\mean() Mean of columns None 1xc

\cov() Covariance of columns None cxC

\pchi() Probability of chi-sguared r=landc=2 1x2
\pdfnor() Multivariate normal density r=c+2 1x1

\mnor() Multivariate normal integral r=c+3 1x1
\momnor() Moments of multivariate normal  rx1 rxl

\alint() All integrals of multinormal

\aorder() Ascending sort order rxl rxl

\dorder() Descending sort order None rxmax(1,c-1)
\sortr() Row sort None max(1,r-1)xc
\sortc() Column sort None Variable'
\part() Extract part of matrix

*vec: vectorizes by columns, in contrast to m2v, which vectorizes by rows.

T\part (A,B) takes two arguments. The elements of the 1x4 matrix B are used to define a
rectangle within matrix A to be extracted.
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Functions, called with syntax of the form \func(argument) differ from operators because
they take an argument enclosed by parentheses (). This argument may be a single matrix
name, or a complex matrix formula. The argument is evaluated before the function is
applied, consistent with the rulesfor using brackets. Functions form a second set of unary
operators (see page 61). Descriptions of these functions follow.

Traceltr()

The trace of amatrix isthe sum of the elements on the leading diagonal, i.e.
n

j1 A
Itisonly allowed for square matrices.
Determinant \det()

Properties of determinants, and ways of calculating them arediscussed in Appendix C. This
function is calculated for square matrices only.

Sum \sum()
The sum of amatrix isthe sum of al itselements, i.e,,
r C
A AA

Product \prod()

The product function of amatrix yields the product of all its elements, i.e.,
k kA
i"1j"1

Maximum \max( )
The maximum function of amatrix yields a 1x1 matrix containing the maximum of all its
elements.

Minimum \min()
The minimum function of a matrix yields a 1x1 matrix containing the minimum of all its
elements.

Absolute value\abs( )
The abs function replaces all matrix elements with their absolute value.

Trigonometric functions\cos( ), \sin() etc.
These functions replace al matrix elements with their appropriate trigonometric
transformation, in radians.
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Exponent \exp()
Any matrix is alegal argument for this function which replaces each element A by €.

Natural Logarithm\In()

Any matrix isalegal argument for this function which replaces each element A;; by In A;,.
If an element is less than 1x10% then the result isIn (1x10-%Y). Although error messages
would be more normal in such a situation, this behavior can be helpful in optimization.

Square Root \sgrt()
Any matrix is alegal argument for this function which replaces each element A;; by \/KJ
If an element is less than zero, afatal error occurs.

Diagonal to Vector \d2v()
The leading diagonal of any matrix is placed into a column vector withmin(RbC) rows, i.e.
r or ¢, whichever isless. e.g.

a000o0 a
if A" [0 b 0 0| then \d2v(A) " |b
00cO c

Vector to Diagonal Matrix \w2d()
A row or column vector is placed in the leading diagonal of a square matrix. e.g.

ao00o0
0Ob 0O
00cO
0o0O0d

if E*[abc d] then \W2d(E) "

Matrix to Vector \m2v()
A matrix is placed in a column vector, by rows. Thus

if A"

b
] then \m2v(A) *
cd

o O T o

This is similar to the function \vec; which places the matrix into a vector by columns,
instead of rows.
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Matrix to Vector \vec()
A matrix is placed in a column vector, by columns. Thus

if AT

ab
d] then \vec(A) *

o T O 9

Notethat it ismore efficient to use \m2v(A) than \vec(A") and moreefficient to use \vec(A)
than \m2v(A™). Both functions work for matrices of any shape.

Matrix to Vector \vech()
All the elements on the diagonal and below are placed into a vector, by columns. Thus

a

b
] then \vech(A) " |c
cd

if A"

Like its counterparts \vec and \m2v, this function will operate on matrices of any shape,
terminating at the last row or column, whichever isthe smaller. Thus

A
ab c

if A" |c d| then \vech(A) " |e
e f d

.f.

Standardize\stnd( )
This operation converts a covariance matrix into a correlation matrix. Replacement of
elements is made according to the formula:

Al O

The diagonal elements of A have to be greater than zero, and A hasto be sgquare.
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Real Eigenvalues\eval()
The real parts of the eigenvalues of a square matrix are placed in a column vector, in
ascending order of size, smallest first.

Real Eigenvectors\evec()

The real parts of the eigenvectors of a square matrix are placed in a square matrix, where
column j containsthe eigenvector corresponding to eigenvaluej, with eigenvalues sorted in
ascending order of size, smallest first (j=1).

Imaginary Eigenvalues\ival( )
Theimaginary parts of the eigenvalues of a square matrix are placed in a column vector, in
ascending order of size, smallest first.

Imaginary Eigenvectors\ivec()

The imaginary parts of the eigenvectors of a square matrix are placed in a square matrix,
where column j contains the eigenvector corresponding to eigenvalue j, with eigenvalues
sorted in ascending order of size, smallest first (j=1).

Column Means\mean()
This function computes the means of the columns of a matrix.

Column Covariances\cov( )

This function computes the covariance matrix of the columns of amatrix. Thusif data are
presented as one line per subject, with r rows for each of the ¢ variables, the output would
be of order cxc.

Probability of Chi-square \pchi(x)

Function \pchi computes the probability of a chi-squared with nu degrees of freedom. Its
argument must be a 1x2 vector contai ning the chi-squared and degrees of freedom. It returns
alx1matrix. Thiscan beuseful whenwriting parameter estimatesand fit statisticsto afile.

Multivariate Normal Density \pdfnor (A)

The function \pdfnor computes the multivariate normal probability density function (pdf)
given by themultivariate normal distribution. Inthe univariate case, thisisthe height of the
normal curve. Matrix A, theargument of thefunction, isanvar+2x nvar matrix, containing:
(first row) avector of observed scoresx;; (second row) avector of population means;; and
(rows 3 to nvar+2) the population covariance matrix O. The pdf is

PO exp &% ¢, TRNO (X, T )

Multivariate Normal Integration \mnor ()

The matrix function \mnor will compute multipleintegrals of the multivariate normal, up to
dimension 10. Itsinput is structured so that for n dimensional integration, the matrix has
n columns and n+4 rows. Thefirst n rows define the covariance matrix, row n+ 1 defines
the mean vector, thelast three are used to define the type of truncation experienced by each
variable. Thisis best described with an example. The script:
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Test multivariate normal integral function
Data Calc NGroups=1

Matrices
A full 1 2 ! Upper limits
B full 1 2 ! Lower limits

R Stan 2 2 ! Covariance matrix
Z Full 1 2 ! Means

Compute \mnor((R_ZABT)/
Matrix R .3

Matrix B 0 O

Matrix A 11

Matrix T 2 2

Option RSiduals

End

!
!
T Full 1 2 ! Type of integral
!
!

computes theintegral of the bivariate normal distribution with correlation .3 from0to 1in
both dimensions. The type parameters (matrix T) are flags that indicate the type of
truncation required:

C Ointegral from-4to g

C lintegra fromb; to 4

C 2integra from a to by

C 3integra from -4 to 4 (this dimension isignored)

where g and b, are the elements of column j of matricesaand b.

Accuracy is set to six decimals by default. Lower precision may be set with Option
Eps=<value> though it should be noted that this option will be treated globally, i.e., for al
such integralsin a particular run.

Moments of the Truncated Multinormal \momnor ()

The matrix function \momnor will compute moments of the truncated multinormal
distribution. Currently, itwill work only with 'tails' of thedistribution, though selection may
be absent for some variables. Hereis a bivariate example:

Test moments of truncated normal function
Data Calc NGroups=1
Matrices
R Symm 2 2 Icovariance matrix
M Full 1 2 !means
T Full 1 2 T!thresholds
S Full 1 2 !selection vector
N Full 1 2 1 of abscissae
Compute \momnor((R_M_T_S N)) /
Matrix R1 .51
Matrix M 0 O
Matrix T 1.282 1.282
Matrix S 11
Matrix N 16 16
Option RSiduals
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End

This script requests the covariances and means of individual s sel ected above the threshold
1.282inaN(0,1) bivariate normal distribution. It returns the covariance matrix in the first
n rows, and the meansin row n+1.

Note: thisfunction can giveincorrect results when the number of abscissae issmall, or the
threshol ds are extreme (more than 3 standard deviations from the mean). CPU timewill go
up with the number of abscissae, but 64 is the maximum (and it goesin jumps 16 20 24 32
48 64, along with some smaller jumps below that). Mx automatically assigns the number
of abscissae to: i) 16 if you enter O or less, ii) 64 if you enter 64 or more, and iii) the next
lowest value if you happen to chose an intermediate value (e.g. it will pick 24 if you enter
30).

All Intervals of the Multivariate Normal Distribution \allint()

It isoften necessary to computethe probabilities of all the cellsof amultivariate normal that
has been sliced by avarying number of thresholdsin each dimension. Thesethresholdsare
moreformally called hyperplanes. Whileit is possible to use the\mnor function to achieve
this goal, it can be more efficient and more convenient to use the \allint function. The
argument to the \allint function must be a matrix with as many columns as there are
variables, and with as many rows as the number of columns plus 2 plus the maximum
number of thresholdsto beevaluated. Thegeneral formis\allint(R_X_T_A) whereRisthe
m X m covariance matrix of m variables, X is the mean vector, T is a row vector whose
elements t; specify the number of thresholdsin dimension i, and A contains the thresholds
and is of order (max(t,) x m).

\Allint returnsthe proportionsin all the cells, cycling from lowest to highest with the last
variable in R changing most slowly. For example, the following script:

#NGroups 1
#define nvar 2 ! number of variables
#define maxthresh 3 ! maximum number of thresholds
Test of allint function

Calculation

Begin Matrices;

A symm nvar nvar

N full 1 nvar

X full 1 nvar

T full maxthresh nvar

End Matrices;

Matrix A1 0 1 ! identity matrix here

Matrix X 0 0 ! zero means
Matrix N 2 3 I first dimension has 2 thresholds (3 categories), second has 3
Matrix T
-1.282 -2.323 ! thresholds are -1.282 and 0 for first dimension,
0 0 ! and are -2.323, 0 and 1.282 for second dimension

10 1.282 1!
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Begin Algebra;
C=\allint(AXNT ;
End Algebra;

End Group

will return:
MATRIX C
This is a computed FULL matrix of order 1by 12
[=\ALLINT(A_X_N_T)]

1 2 3 4 5 6 7 8 9
1 0.0010 0.0490 0.0400 0.0100 0.0040 0.1960 0.1601 0.0400 0.0050
10 11 12

1 0.2450 0.2000 0.0500
containing the desired probabilities.

Ascending Order \aorder()
This function gets the ascending order of a column vector. For example, \aorder(A) with

6 3
A " | 1] would vyield | 1
3 2

Descending order \dorder ()
Thisfunction getsthe descending order of acolumn vector. For example, \dorder(A) with

6 1
A " |.1] would yied | 3
3 2

Sort Rows\sortr()

Used to sort acolumn vector or matrix by rows. If avector, the vector elementsthemselves
are sorted. If amatrix, the first column is taken to be the sort order - and must contain a
permutation of the integers 1 to the number of rows, as might be extracted using, e.g.,
\aorder() above.

Sort Columns\sortc()
This function works the same way as \sortr() but by columns.

Extract Part \part(A,B)

Thisfunction extractsarectangular sub-matrix of matrix A (formerly thiswaspossible only
by pre- & post-multiplying by elementary matrices). One hasto bevery careful toinitialize
matrix B before this statement is given, because the result dimensions are needed to check
syntax. To pre-initialize B you would use the following job structure
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O

Title
Calculation NGroups=1
Begin Matrices;
A Symm 3 3
B Full 41
End Matrices; I <- End matrix definitions with this statement
Matrix A
1
23
456
Matrix B 2 1 3 3
Compute \part(A,B) / ! <- Compute statement *after* matrix statement
Option RSiduals
End

The format for matrix B isrow, column, row, column so in this exampl e the rectangle from
2,1 (row 2, column 1) to 3,3 will be extracted, giving

235

456

Note that the elements of B may define any two opposite corners of asubmatrix of A. To

some extent, the \part() function is binary, but we prefer to list it with the other matrix
functions.

4.3 UsingMatrix Formulae

A matrix formulaisasequence of matrix names and matrix operatorsterminated by a semi-
colon. For example
A*B + \m2v(C);

Covariances, Compute Command

Syntax:
Covariances/Compute formula;

The covariance command usesthe matrices specified following theMatrices command and
special symbols to perform operations or functions on or between them. A Covariance
statement may contain a single matrix and no operations, or it could be very complex. The
command may extend over several lines and must end in a ; or /. Compute is the
recommended keyword for calculation groups, to make reading scripts easier for humans.

The primary method of carrying out matrix algebra is within an algebra section (see page
46). Matrices that appear on the left hand side should not already exist in that group.

M eans Command

Syntax:
Means A formula;
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The Means command operates in the same way as the Covariance command. It exists to
facilitate the modeling of means. All the matrix operators and functions (Section 4.2) may
be used just as when specifying amodel for covariances. A ; or / must end the command.
Currently, Mx will do nothing with modelsfor meanswhen applying thefunctionsLsS, GLS,
AWLS, DWLS. Only theML, US and RM fit functions make use of models for means.

Threshold Command

Syntax:
Threshold A formula;

The Threshold command operates in the same way as the Means to specify thresholds. It
enables modeling of thresholds when fitting to contingency table data. All the matrix
operators and functions (Section 4.2) may be used just as when specifying a model for
covariances. A ;or / must end the command. Threshold cannot be used with any fit function
other than contingency table ML, which is used when CTable data have been supplied (see
chapter 5).

Specid restrictions apply to the dimensions of the matrix calculated in the Threshold
command. The result must have 2 rows and must have at least d columns where d=max
((r-1),(c-1)), in other words, at least one less than the number of rows or the number of
columns in the contingency table, whichever isthe greater. Thefirst (r-1) elements of the
first row of the matrix will contain the thresholds that separate the rows. The first (c-1)
elements of the second row of the matrix will contain the thresholds that separate the
columns. These elements are unstandardized row and threshold estimates, which may be
standardized by dividing by the square root of the product of the two diagonal elements of
the expected covariance matrix calculated by the Covariance or Constraint statement. Use
of unstandardized threshol dsall owsthetesting of model sthat predict differencesinvariance
between groups, but have equal thresholds.

O The user should take care to supply starting values for thresholds that increase from left to

right in both rows of the matrix cal culated by the Threshold command. Ideal starting values
are those that, when standardized, mark the z-scores on the normal distribution
corresponding to the cumulative frequencies of the normal distribution of the row totals
(first row of the calculated matrix) or the column totals (second row of the calculated
matrix). For example, if the following contingency table was supplied as data:

CTable 3 2

20 180 40

360 20 180

then appropriate starting values for 2 row thresholds would be -.67 and +.67 (z-scores
corresponding to the lower 25% and 75% of the normal distribution), and -1.28 would be
appropriate for the starting value of the column threshold (z-score corresponding to the
lower 10% of the normal distribution). Thereforeif the threshold model was simply T, we
would declare

T Full 2 2

and use

Matrix T -.67 .67 -1.28 0

toinitialize it.
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Weight command

Syntax:
Weight <formula> ;

where formulais alegal matrix algebraformula

The fundamental assumption of fitting a model to a population is that there is only one
model. However, the population may consist of a mixture of groups which differ in the
parameters or the entire structure of the model. In M X, the weight command, coupled with
the Nmodel parameter, allow analysis of such mixtures when the raw data are available.
NModel controls the number of models supposed to exist in the population. The predicted
means and covariances are simply vertically stacked in the usual matrix expression for the
means and covariances. For example, if three variableswere being studied with one model,
the predicted mean vector would be of order (1x3) and the predicted covariance matrix
would be (3x3). If two models are being used, the predicted mean vector should be (2x3)
and the predicted covariance matrix (6x3). MXx checks that the size of the predicted
covariance and mean vectorsagree with theNModel and NInput (including any changesmade
with Select/Definition statements). Weight allows modeling of the likelihood that a
particular observed vector is a member of a particular model class. The weight matrix
expression should evaluate to a vector of order (NModelx1). The log-likelihood for a
particular vector then becomes:

Nmodel

InLyoge jl In(w, L)
[

where w, isthe weight, L, isthe likelihood under the i model.

Often, the weights used will reflect simple proportions, and usually Ow, = 1. (see page 141
for an example). Sometimes, covariates may be used to compute the weight applied to a
particular model. Anexampleof suchweighting isquantitativetrait loci analysiswherethe
probability that a pair of siblings have 0, 1 or 2 alelesin common at a particular place on
the genome can be used to weight their likelihood under three models (Eaves et al., 1996).

Frequency Command

Syntax:
Freq <formula> ;

where formulais alegal matrix algebraformula

For maximum likelihood analysis of raw continuous data, it is possible to enter aformula
for the frequency of the individual observations. For a constant frequency that does not
change across the individual cases, this formula could be a scalar (1x1) matrix with the
weight in it. More commonly it is desired that the frequency changes across the
observations, in which casethe use of definition variablesto assign variablesread in asdata
to the elements of matrices may be used.
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4.4  Putting Numbersin Matrices

This section describes three methods of entering numbersinto matrices (see Section 4.5 for
how to specify elements of matricesto befree, fixed or constrained parameters). In Section
3.1, we saw how matrices could be declared asone of 11 types, such asidentity, symmetric,
diagonal or full (see Table 4.1), and how their dimensions (rows, r and columns, c) were
specified. Oninspection of thetable, we seethat typesZero, Identity Identity]Zeroand
Zero|ldentity (12) have no free elements at al. For example, there is nothing more to
know about an 1Z matrix which has 2 rows and 4 columns. It looks like this:

1000
0100
and it cannot be changed at all. If it was altered, then it would no longer be an 1Z matrix.

All six remaining matrix types have madifiable elements which may be atered with the
commandsMatrix, Start or Value. Thenumber of modifiable elementsvariesaccording to:
C  Thenumber of rows and columnsin the matrix

C Thetype of the matrix

All modifiableelementsof amatrix areinitialized at zero. Theorder of elementsinamatrix
isleft to right, by rows. For example, a symmetric (3x 3) matrix would be read as:

1

23

456

See Table 4.3 for more examples on the patterning of matrices.

Matrix Command

Syntax:
Matrix <matrix name> {File=Filename} <numlist>

where <numlist> is afreeformat list of numbers.

Note that different syntax isrequired in multiple fit mode:
Matrix <group number> <matrix name> {File=filename} <numlist>

TheMatrix command suppliesalist of valuesfor the modifiable elements of amatrix. The
list length required varies according to matrix type, and size as described at the start of this
Section, on page 77. For example, suppose we specify adiagonal matrix A with 3rowsand
3 columns. Thefourth columnin Table 4.1 showsthat the number of free elementsisequal
tor for diagonal elements, so we supply r elements. The command lines

Matrix A .3 59

or, equivaently

Matrix-1-would-like-to-change-is A

0.3D+00 5 9.00000000

would result in matrix A as:
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O

300
050
0009

TheMatrix command operates regardless of whether elements have been specified asfixed
or free parameters.

Matrix will read its elements from afile with a FORTRAN format on thefirst line. Such
files may have been produced by an earlier run of MX, or by another program. LISREL
matrix output files (produced by commands such as gamma=filename on the LISREL OU
line) are fully compatible. The files must contain at least as many numbers as required to
fill the changeable elements of the matrix specified (see page 77).

Mx awaysexpectsaformat, so a* should be supplied for matricesin freeformat (numbers
separated by blanks and carriage returns).

Start and Value Commands

Syntax:
Start/Value <value> <element list>/ All

where <element list> consists of matrix elements (e.g. A 1 2 3) and may include the T0
keyword

In alarge matrix, it is not convenient to provide a value for al the elements of a matrix,
when only afew need to be modified. Under these circumstances, it is easier to explicitly
change elementsby name. Elementsmay bereferred to by up to three subscripts, according
to the syntax

A {<group>} <row> <col>

If the matrix you wish to refer to isin the current group, the group number may be omitted.
The numbers <group> <row> <col> may be separated by any number of non-numeric or
blank characters, so that, for example, to put .5 inrow 2 column 3 of group 1'sA matrix, you
could enter:

Value.5 A123

will work the same as

Value.5 A(1,2,3)

N.B. It isonly possible to modify matrices declared in the current or previous groups.
Value and Start recognize #define' d variables (see page 42). For example. We could have
the statements

#define first 1

#define rowsinA 6

#define colsinA 10

at the top of the script, and then

Value 1.5 A first 1 1 to A first rowsinA colsinA

would set 1.5 to al the fixed (non-free) elementsof A, from A 1 1toA 6 10.
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The difference between Start and Value lies in their treatment of elements when the
keywordsALL or TO are used (! isasynonym for T0). With the keyword ALL, Start assigns
astarting value to every free parameter specified at that point in the input file. vValue does
the opposite -- it assignsits value to every fixed matrix element specified up to that point.
Although Start does the same thing if the TO keyword is specified, i.e. only apply itsvalue
to free parameters, Value behaves differently. It will assign avaueto all elementsin the
same specified range, free parameter or fixed.

The T0 keyword should be used only to specify arange of matrix elementswithin the same
matrix.

45 Putting Parametersin Matrices

Parall €l to the placement of numbersin matricesdescribed in Section 4.4, there arefacilities
for putting parametersin matrices. Note also that all modifiable elements of a matrix can
be specified asdifferent free parameters using the keyword Free after the matrix isspecified
(see Section 4.1), and that building models with thisin mind can be much faster and more
flexible (see Chapter 1).

Pattern Command

Syntax:
Pattern <matrix name> {File=filename} <numlist>

where<numlist>isalist of 1I'sand O's.

Note that different syntax isrequired in multiple fit mode:
Pattern <group number> <matrix name> {File=filename} <numlist>

ThePattern command isasimplemethod that hasthe same syntax asthe LI SREL command
onwhich it wasbased. Following thePattern command, the user must provide the correct
number (seeMatrix command page 77) of 1'sand O'sfor that matrix. A 1 (or any non-zero
value) indicates that the element is a free parameter (which may be constrained to equal
another free parameter - see the Equate command on page 80), and a O indicates that the
element isfixed.

Fix and Free Commands

Syntax:
Fix/Free <value> <element list>

where <element list> isalist of modifiable matrix elements

The Fix and Free commands operate directly on specific matrix elements or sets of matrix
elements. Fix makes a parameter fixed (if it was Free before) and Free makes an element
afree parameter to be estimated. Matrix elementsare referred to by group, row and column
as described in page 78. The keywords TO and ALL may be used to specify ranges of matrix
elements to be fixed or freed. See page 105 for alternative methods to fix parameters.

For example, suppose in group 1, matrix A was defined as symmetric, with 4 rows and
columns. Initially it would be patterned with zeroes throughout. The command
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Freeal21-al143
would give the following pattern:

36
4 7
58
80

if this command was followed by

FixAl42

the parameter specification would become:
36
40
58

6 080

Insymmetric matrices, referencesto the upper trianglearelegal ;anything doneto an element
one side of the diagonal (A;) is done to the corresponding element on the other side (A;).

Equate Command

Syntax:
Equate <matrix> {<gp>} <r> <c> <matrix> {<gp>} <r> <c> ...} }

In order to constrain matrix elements to equal one another, the Equate command may be
used. Itsprimary purposeisto specify equality constraints among parameters, but it can be
used to copy anumeric valuefrom one matrix element to another. Thereisabig conceptual
difference between the first element specified in alist and the others. The fixed or free
status of thefirst element isgiven to theremaining elementsin thelist, bethey fixed or free.
If thefirst element is afree parameter, the same parameter is copied to the other elements.
If the first element is fixed, then awarning message is printed, to the effect that al other
elementswill be fixed. Thevaluein thefirst element isthen passed to the other elements
inthelist. TheEquate command may be used within matrices, or across matricesin the same
group, or across matrices in different groups. Note that it is not possible to use Equate to
make an immovable element (such as an element of a matrix specified as type 1D, or an
off-diagonal element of a diagonal matrix) into afree parameter.

For example, given matrices specified in group 1 asfollows:
Begin Matrices;

A Symm 3 3 Free

B Full 2 4

I Identity 6 6
End Matrices;
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the following Equate statements are legal:

Equate A1 1 B(2,2) B14

Equate B2 1 A 123

Equate BANANA 2 2 APPLE 1 1 1

However, the following areillegal:

Equate A1 1122 (9

Equate 1 55B11 (b)

Equate A12C11 (¢

Equate A4 4B 11 (d)

Equate A22 G411 (¢

They fail because: | isan identity matrix (a& b), C has not been specified (c), A does not
have 4 rows and columns (d), and it is not possible to refer to an element of amatrix in a
later group (e).

For large models with many constraintsit is often more efficient to use the Specification
command, or to seek repetitive structuresin the model matricesand use partitioned matrices
(see Chapter 1), or both. The kronecker product can be particularly useful when specifying
repetitive partitioned matrix structures.

Specification Command

Syntax:
Specification <matrix name> a { b {c}}
where a, b and ¢ are not necessarily distinct integers.

Note that different syntax isrequired in multiple fit mode:
Specification <group number> <matrix name> a { b {c}}

Following the Specification command, the user supplies alist of numbers that variesin
length according to the dimensions and type of the matrix (see Section 4.4). If azerois
supplied, it indicates that the element is to be fixed. Non-zero elements refer to free
parameters, and the same number refersto the same parameter. For example, the command
Specification A

123000

000321

would be equivalent to the statements

Pattern A

111000

000111

Equate A1 1A 26

Equate A1 2 A 25

Equate A1 3 A2 4

The second method becomes tedious and error-prone in large models.

Note that the Specification and Pattern commands cannot be mixed in the same M x job.
Thisisfor safety, because the opportunities for user error are too large.
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Boundary Command

Syntax:
Bound low high <parlist> / ALL

where<parlist>isalist of matrix elementsor alist of parameter Specification numbers.
Boundary Constraints

By default, parameters to be estimated are constrained to lie between -10000 and +10000.
These limits can be increased or decreased with the Bound command. Boundaries may be
supplied more than once for any parameter, but only the last Bound statement referringto a
particular element is used. For example the statements

Boundary -1 1 all

Boundary .3 5a146a15686

would change the limitsfor all parametersto -1 and +1, except those (if any) in elementsA
146andA 15 6. TheT0 syntax may be used to specify ranges within matrices, so that
Boundary 0 1 X 1 2 to X 1 6

would make parametersin al elements between X 1 2 and X 1 6 lie take values between
zero and one. If the Specification command has been used to specify parameters in
matrices, then it may be easier to refer to parameters with these numbers in a Bound
command. Thus

Specification A

0246

2067

Boundary 0 10 2 4

would be permitted as amethod of bounding parameters 2 and 4 to lie between zero and ten.

Linear and Non-Linear Inequality Constraints
See page 54 on the use of constraint groups to implement inequality constraints.

46 Labe Matricesand Select Variables

Labeling Matrices

Syntax:
Labels Row/Column <matrixname> <label-list>

After matriceshavebeen declared, whether withinaMatrices or Algebra section, label smay
be given for the row or column (or both) of any matrix that has free elements. Matrices
without free elements (Zero, Identity, ldentity|Zero, andZero]ldentity andUnit) are
never displayed so labels provided for these matrices will not appear on the output. The
label-list contains|abel s separated by blanksor carriagereturns. Labelsmust not beginwith
a number and may be up to 8 characterslong. More characters can be read, but Mx only
regardsthefirst eight as significant, and will only print the first eight on the output.

Labels may be given for the observed data by issuing aLabel command before the matrices
command, as described in Section 4.6.
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| dentification Codes

Syntax:
ICodes <numlist>

where <numlist> isa number list of length NInput_vars.

The 1Codes command may be used in conjunction with theVL or rectangul ar datato specify
anon-standard structure of the expected covariance matrix. 1t may be thought of asaselect
command which operates on the predicted covariance matrix and predicted mean vector.
By default, the identification codes for the covariance matrix arel 2 3 4... For example,
if NInput_vars=3 then by default the expected covariance matrix has a structure like this:

1 2 3
1 Vi
2(Cp V,
3 Cis Cu V3

From which structure it would be possible to read datain aVLength file that had forms:

.1

WNDNNNEFEPNEPEPNWOWEFEDNPRE PP

123.1.2.3

and any of these could bereordered. For example, if thefollowing VLength datawereinpuit:
2

31.9 4

Mx would generate a covariance matrix of the form

3 1
3 (Vs
1{C, V,

if means are being estimated, they will also be selected appropriately, in this case selecting
Hs,4; from an initial vector (L, M, Hg)-
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The 1Codes command allows the default order 1 2 3... to change, making an infinite
variety of input data vectors readable. The repetition of a number is most useful for
pedigrees of variable structure, for example, if the model generates the covariance between
two parentsand two children, datathat comefrom familieswith morethan two children may
be handled. In this case, the 1ICodes command would be;

ICodes 1 2 3 3

And thus the covariance matrix looks like this:

F M C G

F Ve

M| Cey Vi

G Cee Cwe Ve

< Cec Cuc Cec Ve

If the following VLength data were read:

3

333.2 .4.6

then Mx would create the following covariance matrix for this data structure:

Cl C2 C3
Cl VC
C2 CCC VC
C3 CCC CCC VC

The fact that two 3's have been given allows the generation of the expected covariance
matrix between any number of individuals with code 3.
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5 Optionsfor Fit Functionsand Output

What you will find in this chapter

Details on the built-in fit functions

How to use other fit functions

How to increase or decrease the output
Confidence intervals and standard errors

Power calculations

Changing the technical optimization parameters
Fitting submodels with multiple fit

Writing matricesto files

Saving jobs and results to binary files

How to create RAM path diagrams

HEFHHEHFHFHH

5.1 Optionsand End Commands

Syntax:

Options <multiple> <fitfunc> <statout> <optimpar> <write> End \

where <multiple> starts multiple fit mode, <fitfunc> specifies the fit function, <statout>
requests statistical output, <optimpar> requests optimization parameters, and <write>
specifies the filenames to write matrices to files

The Option lines of MXx alow the specification of a wide variety of keywords and
parameters to control the type of fit function used, the amount of output requested, file
names for result matrices, and many others. TheOption command does not signify the end
of a group, so several Option lines may be given within any group. Option commands
should follow Model or Covariance statements, and should not be followed by Bound
commands. To end agroup, theEnd Group; command is used, for example,

Option Mxa=Afile.out
Option RSiduals NAG=30
End Group;

5.2 Fit Functions; Defaults and Alter natives

The fit function for agroup is automatically set according to the type of datathat are read.
For example, if covariance matrices alone are read, the default is maximum likelihood.
Table 5.1 shows the default fit functions selected by Mx for a given datainput. Note that
the method may change between groups. If afunction that does not asymptoteto +* (e.g. RU
or RM) is used in any group, then no < probability is given at the end of optimization. In
generd, the default fit function is appropriate for the data supplied. Mx does hot provide
for atering the input data from one type to another (e.g. converting a covariance matrix to
acorrelation matrix). However, itisasimpletask to write aseparate Mx script to makethis
conversion.
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Table5.1 Default fit functions according to the type of datathat have been read.

Input data Default fit function
CMatrix, KMatrix or PMatrix ML

CMatrix, KMatrix or PMatrix with ACov AWLS

CMatrix, KMatrix or PMatrix with Avar DWLS

Rawdata, VLength or Rectangular RM

CTable ML,

CMatrix - covariance matrix; KMatrix/PMatrix - correlation matrix; ACov - asymptotic
covariance matrix; Avar - asymptotic variance matrix; Radiata - Raw data; VLength -
variable length data; Rectangular - rectangular file; CTable - contingency table;

ML - maximum likelihood; AWLS - asymptotic weighted least squares; DWLS - diagonal
weighted least squares, RM raw maximum likelihood; ML - maximum likelihood assuming
bivariate normal liability.

Standard Fit Functions

Thereare several good introductionsto the propertiesof different fit functions(e.g Jéreskog
& Sorbom, 1989; Bentler, 1989). Controversy existsabout therel ative meritsof thedifferent
methods in the face of assumption violations (see Kaplan, 1990), and it seemswisefor the
user to treat thisinformation inthe sameway asawhitewinefrom the Loire (drink youngest
available). Currently, maximum likelihood (ML) is showing robustness in the face of
violations of the assumptions of multivariate normality. Asymptotic weighted |least squares
(AWLYS) generaly performs better in the presence of kurtosis, but can be at least as badly
affected by skewnessasML. Seehowever, simulationwork by Rigdon and Ferguson (1991)
for problems with tetrachoric correlations.

In the following sections, the calculation of the fit functions is described, where Sis the
observed covariance matrix, Ois the expected covariance matrix, tr(A) indicates the trace
of and JA| indicates the determinant of matrix A. Sand O are of order p and df is one less
than the sample size used to calculate S.

Least Squares LS
The unweighted least squares fit function is calculated by the formula:

Ls = df (1 (S&O" (SS‘O)Z)

Maximum Likelihood ML
When model fitting to covariance matrices, the maximum likelihood fit function is

ML = df (In]3&In|S| % (tr (SO*Y) &p)
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and thisis modified when both a mean vector x and a model for the means | (see page 74)
are supplied, this function is augmented to become

af%1

MLy * df(lnlOl&InlSl%(trS(')&l))&p%?

(X&) O*H(x& 1) % 1)

In order for the ML fit function to be calculated, O must be positive definite. If, during
optimization, the determinant of Sislessthan 10°° then Mx uses apenalty function or other
methods to try to steer optimization back towards a positive definite solution. The penalty
functionis

10"
1O}

100( p2%10%

If the starting values begin optimization in this region, it is difficult for the optimizer to
escape this high plateau, so optimization may fail. To avoid this, starting values may be
revised or the LSML fit function may be used to obtain sensible starting values for ML
estimation. LSML first fits the model by least squares, then by maximum likelihood.

Generalized least squares GL S
Generalized least squaresisbased on the principlesof Aitken (1934-35); see Browne (1974)

1A\ 2
GLs = I (1&S410)

GL S operates for covariance matrices only.

Asymptotic weighted least squares AWLS
Asymptotic weighted least squares follows from work by Browne (1982, 1984) and others.
Effectively, the variance covariance matrix of the observed summary statisticsisused asa
weight matrix W. Formally thefit functionis

n
AWLS N

1

i n k
_Jil .kil 'I'il (S”. & OIJ) Wﬁh (S(I & Qd)

By default, if a correlation matrix (KMatrix or PMatrix) is supplied, the above formulais
modified to

n i&l n k&1

AMSq " § § 3,8, SEOWiL (6,205 00y

The term %(1&0”)2 exists to constrain the elements of the diagonal to equal one. If the
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model failsto meet this constraint, the fit functionisinflated. Mx printsthe amount of the
fit function that is dueto this component of model misspecification. The second termisnot
calculated (and does not contribute to thefit function) if the keyword Diagonal appears on
the Option line.

An alternative approach to maintaining a diagonal of ones would be to standardize the
expected covariance matrix before calculating the AWLSfit function. Mx does thisif the
keyword Standardize appearsontheOptions line. Some carewith starting valuesisneeded
here, because the solution for amodel standardized in this way is hecessarily not unique.
A third approach would be to use a nonlinear constraint group (see Section 3.5) that
constrains the diagonal elementsto equal unity.

Diagonally weighted least squares DWLS

Diagonally weighted | east squaresisasimplified form of AWL Sfor usewith large problems
where the AWLS matrix becomes unmanageably large. It is a compromise with less
statistical validity than AWL S and should be used with caution. Select does not work with
DWLSto discourage itsuse. The fit function for DWLSissimply:

3 S0

n
DWLS * § §, i

=

whereW |sad|agonal matrix of variancesof the observed covariances. 3. 13 -, isreplaced
by 3 23J l|f acorrelation matrix is supplied as data.

Least Squares- Maximum Likelihood LSML

Thisfit function starts with unweighted least squares, and takes parameter estimates from
the solution as starting values for maximum likelihood estimation. This method is useful
to avoid having to specify starting val uesthat generate a positive definite covariance matrix.
Its disadvantage is that it consumes more computer time than would supplying appropriate
start values and using ML alone. Though more robust to bad starting values, it is not
infallible; optimization is not (yet) an exact science.

Maximum Likelihood Analysis of Raw Continuous Data

When we have asample of complete multinormal data, the summary statistics of meansand
covariance matrices are sufficient statistics to obtain maximum likelihood estimates of
parameters (see the keyword ML above). It iscommon practice to remove from analysisany
subject that has missing data. However, there are occasions when missing dataresult inthe
omission of asignificant amount of datafrom analysis. If the number of types of missing
datais small, for example, if there are really two sub-populations, one that has data on 6
tests, and one that lacks data on the fourth test, then covariance matrices could be computed
separately for the two popul ations and modelsfitted separately to the different groups. M X
isflexible, alowing different groups to have different numbers of input variables.

This multi-group approach breaks down if the number of sub-populationsis large and the
sample size for each group istoo small to estimate a positive definite observed covariance
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matrix (this happens if the number of variables exceeds the number of subjects). For this
reason, a number of methods of handling incomplete data are provided in Mx. RM (raw
maximum likelihood) isreally an extension of the multigroup method described above, but
calculatestwicethe negativelog-likelihood of the datafor each observation. Theprocedure
followsthetheory described by Langeet al., (1976). If thereare k observed variablesinthe
set, the normal probability density function of an observed vector Xx; is

PO exp &% ¢, TRNO (X, T )

where Qs the population covariance matrix and i, is the (column) vector of population
means of the variables, and |O] and O'* denote the determinant and inverse of the matrix O,
respectively. Thefit function is thus:

RM = &klog(28)%log|q% (x; T pNO'™ (x, T )

If there are incompl ete data, a separate group could be constructed for each different type
of datavector. Thiscould be rather tedious for anything beyond avery few types of vector,
so Mx provides a second, more general approach. The approach is to create a variable
length record or rectangular file (page 49). Thisallowsthe use of the abovefit function, but
with avariable length observed vector x. The appropriate mean vector | and covariance
matrix O is automatically created by Mx for each observation. To save on computer time,
the creation of p and O (and importantly O'*) isdone only if avector isdifferent in structure
from the previous vector. Therefore, considerable CPU-time saving can be obtained if
sorted data are supplied to Mx. An example script can be found on page 138. Individua
likelihoods and related statistics can be written to afile (see p. 107).

Maximum Likelihood Analysis of Raw Ordinal Data

Data analysis proceeds by maximizing the likelihood under a multivariate normal
distribution model. In order for thisto take place, it is necessary to supply both a matrix
formula for the covariances and a matrix formula for the thresholds. The covariance
formula must result in amatrix which is square, symmetric ® and has the same order as the
number of variables read in from the Ordinal file. The threshold statement must yield a
matrix which has the same number of columns as the number of variables being analyzed.
The number of rows of this matrix must match the maximum category of all of the variables
in the datafile, or if the highest statement is used, the largest value in the argument to this
command. This maximum category of al is known as maxcat.

For avector of observed ordinal responsesy = (Yo, V1, --- Ym), the likelihood is computed by
the expected proportion in the corresponding cell of the multivariate normal distribution.
Let the highest category of variablej be denoted by hj, and let ti; denote the " threshold of
variablei. The expected proportion in the categories of y is computed as:

s baw - tmag (%), dlx
My, M2, Mm,

8 |f the matrix is not symmetric, only the lower triangle will be used, but the use of hon-symmetric
predicted covariance matricesis confusing and is not generally encouraged
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wheret, j= - 4, t,= 4, and 6(x) isthe multivariate normal probability density function (pdf),
given by
12602 exp &% O Y RONO' Y (x, T )

inwhich O isthe predicted covariance matrix of the variables, |, is fixed at zero for all i.

Toillustrate in atrivariate case, the two vectors of observations
021

and

.. 1

would have likelihoods computed as:

tl, t2; t3,.
0 (X,,X,, X,), dx, dx, dx
Mea M2, M3, (12X3)X3X2 !

If the third variable is binary, then the upper limit on integration would bet3, = 4. For the
second vector of observations, two measures are missing so the likelihood simplifiesto the
single integral:

3,
M3, 00x;).

Tests of mean differences between populations may be carried out by adding a vector of
constants to each row of the threshold matrix. This may be is easiest to do via the
Kronecker product of a 1x mvector of free parameters with a Unit column vector that has
maxcat elements. This formulation is a parametric model for the distribution of ordinal
responses. The parameters of the distribution are those that influence the predicted
thresholds T and the predicted covariance matrix O.

An especialy important feature of the maximum likelihood raw data approach is that it
provides anatural method of handling missing data that are so common in longitudina and
multivariate studies. In theory, data that are missing completely at random (MCAR) or
missing at random (MAR) are correctly handled by thisprocedureand will provide unbiased
maximum likelihood estimates as long as the assumptions of the multivariate normal hold
(Little& Rubin, 1987). Thisisentirely anal ogousto the continuouscase. Failuretoinclude
casesthat contain missing observationscan lead to biasin parameter estimates. Elimination
of such cases will amost always lead to larger confidence intervals on all parameters.

A further advantage of the raw data approach is that it provides a natural way to exploit
moderator variables, using the definition variable methods described on pages 35 and 139.
At thistimeit isonly possible to model binary variables via path diagrams in the graphical
interface, because the GUI always generates a script with asingle vector of means, and not
amatrix of thresholds. Inthe case of binary variables, the method will work from diagrams
because Mx treats the mean and threshold statements equivalently.

An example of data analysis using this method may be found on the Mx website at
http://views.vcu.edu/mx/exampl es/ordinal
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Contingency Table Analysis

Mx has a built-in fit function for the maximum-likelihood analysis of 2-way contingency
tables. Two-way tables are inherently bivariate, so we are implicitly fitting a 2x2
covariance matrix to the cell frequencies, and estimating a tetrachoric or polychoric
correlation. Figure 5.2 shows acontour plot of the frequency distribution of two variables,
Xand.

File Contains Data for
PostScript Printers Only

Figure5.2 Contour plot showing abivariate normal distribution with correlation r=.9
and two thresholdsin the X and Y dimensions.

For anr by ¢ contingency table, there are assumed to ber-1 row thresholds and ¢c-1 column
thresholds that separate the observed categories of individuals.

Twice the log-likelihood of the observed frequency datais calculated as:

. r C n”
InL; ) 2n;In n_p”

where n; is the observed frequency in cell ij, p; isthe expected proportionin cell ij, and n_
is the total number of observations in the contingency table. The expected proportion in
each cell is calculated by numerical integration of the bivariate normal distribution,
performed by subroutine BIVNOR (Schervish, 1984). For example, theexpected proportion
with individua 1 lying in the category between threshold a and threshold b and with
individual 2 lying in the category between threshold ¢ and threshold d would be given by:

« b d.
12 m 0(v,,v,),dv,dv,

where 6 denotes the multinormal probability density function, and v; is the liability of
individua I.

Since n; is not estimated, the number of degrees of freedom associated withanrxctableis
rc-1. If z cells have not been ascertained, the number of degrees of freedom is reduced by
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z. Inorder to compute an approximate <* statistic, twice the likelihood of the data under the
model is subtracted from the likelihood of the observed data themselves, calculated as

r Cc nIJ
7] I -.inil 2n;In -

See page 75 for detail s on specifying thresholds for model sfitted to contingency table data,
and page 128 for an example script.

Non-random Ascertainment

Mx will automatically cal culatean ascertainment correctionwhilecal culating thelikelihood
of theincompletely ascertained data. For example, if we ascertain a sample of 60 probands
from hospital recordsand examinetheir spouses, of whom 10 are observed to havethe same
disorder, then a 2x 2 contingency table would be supplied as follows:

CTable 2 2
-1 -1
50 10

The-1inthecellsof thefirst row indicate that subjects were not ascertained in these areas.
Thelikelihood of the observed data must be corrected for the incompl ete ascertainment of
subjects for study. Effectively, aswe omit certain classes of person from observation, so
the likelihood of observing the remaining individuals increases. Mathematically thisis
expressed by dividing the likelihood by the proportion of the population remaining after
ascertainment. We obtain thisby subtracting the proportionsin all omitted classesfromthe
total population proportion (i.e. 1.0). In our example, assuming that individual 1 hasto be
above threshold, the proportion omitted is

A ow t t.. t 4.,
ma4rm4o (v,Vv,),dv,dv, % e 6(v,,v,),dv,dv,

wheret isthe ascertainment threshold, v, and v, are theliability values of individuals 1 and
2, and 0 is the multinormal probability density function. The likelihood corrected for
ascertainment would simply be the likelihood as obtained before, but divided by 1TA .

User-defined Fit Functions

If the User-defined keyword appears on the Options ling, the fit function for the group is
to be user specified. In order for this to be the case, the matrix expression given as the
model (Constraint or Covariance command) must evaluateto a scalar. Thereare no other
rules. Any of the automatically defined fit functions LS, ML, AWLS etc. could be specified
as user-defined functions, but it is generally less efficient to do so. User-defined functions
are recommended only when the built-in functions are not suitable. A simple exampleis
shown on page 147.
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5.3 Statistical Output and Optimization Options

In this Section we discuss some of the statisticsthat Mx will compute automatically. While
the range of these statisticsislimited, the user should notethat it is quite straightforward to
compute his or her own functions of the parameters or goodness of fit statistics using
calculation groups (see Section 3.5 for syntax and page 118 for an example script that
computes standardized estimates).

Standar d goodness-of-fit output

At the end of optimization, Mx prints the value of the fit function, which is asymptotically
distributed as +* when the fit function is maximum likelihood and the data are covariance
matrices. Similar distributional propertiesare thought to hold for generalized | east squares,
the contingency table likelihood fit function, and asymptotic weighted least squares. For
these functions, the degrees of freedom and probability are printed, together with Akaike's
Information Criterion, computed as +*-2df. The degrees of freedom are calculated as the
number of observed statistics minus the number of observed statistics plus the number of
non-linear constraints. To be judged a good fit, models should have a non-significant chi-
squared (p>.05). Withlarge sample sizes, significant chi-squared can come from relatively
trivial failures of the model; alternative comparative fit statistics (see p. 100) can be used
for these cases. Confidence intervals on the goodness-of-fit <* may be printed using option
Cl.

User-defined fit functions and raw data maximum-likelihood are not treated as being
distributed as chi-squared, so the probability is not computed by default. However,
sometimes the user-defined fit-function will indeed be appropriately distributed, so the
option ISCHI can be used to override this default behavior. An example where thiswould
beappropriateiswherethevalue of twicethelog-likelihood from asaturated or super model
-2In L had been entered as a user-defined fit function group, and option df used to adjust the
degrees of freedom to the difference between the models.

RMSEA

Root Mean Squared Error Approximation, or RMSEA (Steiger & Lind, 1980; McDonald,
1989), isagoodness-of-fit index which isautomatically printed by Mx after fitting amodel
that results in a chi-sguared goodness-of-fit. The primary aim of this statistic isto provide
ameasure of fit that isrelatively independent of sasmple size. Essentialy, itisaweighted
sum of discrepancies. Vauesbelow .10 indicate agood fit, and values below .05 indicate
avery good fit. Theindex iscomputed by

RMSEA = /(+%&df)/n / df

for the single group case. Inthe multigroup case, adifferent formulaisused. Following an
unpublished manuscript by Dr. Steiger, theindex iseffectively multiplied by the square-root
of the number of groups, when the same number of variablesisanalyzed in each group. Mx
also makes adjustmentsfor different numbersof variablesbeingin each group, althoughthis
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is highly experimental at present. For now, it is sufficient to note that the multigroup
RM SEA iscorrected fromtheoriginal formula. RM SEA should beviewed skeptically when
the groups do not have the same number of variables.

Suppressing Output

Syntax:
Option NO_Output

Before describing ways in which Mx output can be increased, we note the valuable option
NO_Output which prevents printing of all output for agroup. Thisoption should be used by
the ecologically-minded as often as possible. Even the environmentally unconscious may
find it useful to reduce their disk-space usage, but some caution should be taken not to use
it too frequently since valuabl e information that could reveal misspecification of the model
might be missed.

Appearance

Syntax:
Option NDecimals=n or Width=m

where n isthe number of decimal places, and m is the number of columns

By default, Mx will print most numberswith three decimal places, or useexponential format
if therearevery small or very large numbersinamatrix. Y oumay overridethisdefault with
the NDecimals keyword, where NDecimals=n will print n decimal places of precision.

Mx prints up to 80-columns of output, which is suitable for viewing on an 80-column
display or legal/letter/A4 paper (in portrait orientation) with a10cpi font. Thisdefault may
be changed with the option Width=m where m is the number of columns desired. At the
present time, the NDecimals and Width parameters cannot be used together (sorry).

Residuals

Syntax:
Option RSiduals

The Rsiduals keyword requests that the observed matrix, the expected matrix, and the
residuals (observed - expected) be printed. In calculation and constraint groups, only the
expected matrix is printed, since neither has any data. Note that RSiduals isthe only way
to print the observed matrix, and may be especially useful if the Select command has been
used. When means have been supplied, the observed and expected mean vectors will be
printed. Expected meansalso appear when using maximum likelihood with raw data. With
contingency tables, Mx prints the observed and expected frequencies and their difference.

Under asymptotic weighted least squares Mx prints two types of residual matrix. First, it
prints the unweighted difference between the observed and expected correlations or
covariances. Second, it prints a weighted residual matrix, which is calculated from the
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formula (see page 86):
n k&l

WRes " § 3§ (S0 Wi (S,8Q,) %2 (180,

The sum of these elements gives the fit function for the group (neglecting any penalty
function for the diagonal of a correlation matrix). Note that not all elements will be
positive, but that their sum is necessarily non-negative. Quite often, inspection of the
weighted residualswill give a clearer idea of the cause of model failure than consideration
of the unweighted residuals alone.

Adjusting Degrees of Freedom

Power

Syntax:
Option DFreedom=n
where n isthe adjusted number of degrees of freedom

If a correlation matrix is read instead of a covariance matrix, the number of statistics
provided is usually less than when variances are also given. The amount of the reduction
ininformation depends on the structure of the data. For example, if MZ and DZ twins have
been measured on one variable, there are four statistics that are necessarily equal (the
variances of twin 1 and twin 2 in the MZ and DZ groups). Only one of these statistics
confersany information (it scalesthe size of the MZ and DZ covariances), so three degrees
of freedom are lost, and DF=-3 should be placed on theOptions line. For multivariate twin
data, DF=-3k should be used, where 3k is three times the number of variables on which each
twin is measured. We can extend this idea to m groups of pedigrees of size n, each
measured on k variables, in which case df=-k(mn-1) should be used.

Calculations

Syntax:
Option Power=alpha,df
wherealpha isthe probability level of thetest, and df arethe associated degrees of freedom

Power calculations are useful in awide variety of contexts, especially experimental design
and getting grants. For theoretical work, once one has established that it is possible in
principle to detect an effect, anatural question is‘what are the chances of finding it with a
sample of x many subjects? The usual way to approach this problem is to simulate data
with aset of fixed parameter values, called the ‘true model’. These simulated data are then
used asdatato which afalse model isfitted. Thefalse model would normally be asubmodel
of the true model, for example with a parameter fixed to zero instead of the value used in
the true world model. The size of the chi-squared from this false model, given the sample
size, indicates the power of thetest. ThePower command uses this-+? and the user-supplied
significance level & (alpha) and degrees of freedom (df) to compute the power of the study
toreject the hypothesis. Inaddition, the program computesthetotal sample size that would
be required, given the current proportion of subjectsin each group, to reject the hypothesis
at various power levels from .25 t0 .99. See page 114 for an example application of this
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method in the context of the classical twin study.

Confidence Intervals on Parameter Estimates

Syntax:

Interval {@val} <Matrix element list>

where val isthe desired percentage of the confidence interval;

e.g., Interval @80 will give 80% confidence intervals (default is 95%)

This command requests confidence intervals on any matrix element. Usually one would
request an element that is a free parameter, but it is also possible to request confidence
intervals on computed matrices that are functions of free parameters. This alows
confidence intervalson indirect effectsin structural equation modelsto be computed. MXx
computes the upper and lower confidence intervals by conducting an optimization in n
parameters for to find each interval. For long-running jobs involving many parameters or
cpu-intensivefitting functions, optimizationsto find confidenceinterval son parameterswill
greatly increase the time taken to execute the job. Therefore, we recommend that Intervals
be requested only when the script is thought to be working correctly.

Therelative meritsof likelihood-based confidenceinterval sversus standard errors based on
asymptotic theory of the parameter have been discussed by Meeker and Escobar (1995) and
Neale & Miller (1997). In brief, standard errors have the advantage of being fast to
compute, but have several undesirable statistical properties. First, the distribution of the
parameter estimate is assumed to be normal, whereas we have shown that it may not be
(Nedle & Miller, 1997). Second, t-statistics computed by dividing the estimate of a
parameter by its standard error are not invariant to transformation (Neale et al., 1989;
Kendall & Stuart, 1977). That is, if we estimate a? instead of ain a model, then a test of
whether parameter a is significant will not give the same answer. For positive values of a
thelikelihood-ratio test that a=0 will givethe same answer, regardless of whether the model
was parameterized in terms of a or a2 Third, mindless use of the standard error can give
nonsensical values if the parameter estimate is bounded. For example, a residual error
variance may be theoretically bounded at zero, yet the standard error would imply lessthan
zero as a lower bound on the estimate. With bounded parameters, Mx will not report
infeasible valuesfor the likelihood-based confidence intervals, athough it should be noted
that confidence intervals that rest on parameter boundaries may not yield a decrease in fit
corresponding to the required amount for the interval in question. Finaly, the only major
drawback to confidenceinterval sistheadditional computationtimerequired. Ascomputers
become faster and cheaper, this problem will diminish.

The procedure that MX uses to find confidence intervals is described in Neale & Miller
(1997). Thecentral ideaismoveaparameter asfar away aspossiblefromitsestimate at the
optimal solution (i.e., itsmaximum likelihood estimate (MLE) if thefit functionisML) for
agiven amount of increase in the fit function. For example, 95% confidence intervals are
found by moving the parameter away from its MLE to a place where the fit function
increases by 3.84 chi-squared units. Note that this moving away is done with all the other
parametersinthemodd still freeto vary. Obvioudly, stepping away fromthe MLE in small
increments and re-optimizing would be very cpu-intensive, requiring moptimizations over
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n-1 parameters for an m step search on an n parameter model. Instead, M X usesamodified
fitting function that is afunction of the differencein fit between the MLE solution and the
new solution, and the value of the parameter. Essentially, the parameter (or matrix element)
in question is minimized (lower bound) or maximized (upper bound) subject to the
constraint that thefit of the model isacertain amount worse than at the maximum likelihood
solution. Aswe know, optimization is not an exact science, and there can be problemsin
conducting the search to find the confidence intervals, just as optimization may not be
successful when fitting amodel. To combat this problem, MX uses two main strategies.
First, if NPSOL returned an IFAIL of 4 (too few iterations) or 6 (Hessian accuracy
problems) then it will repeat the optimization from the final point, up to amaximum of five
times. Second, the user is notified of such difficulties with the Lfail and Ufail columnsin
the output. For example, output might be

Confidence intervals requested in group 3
Matrix Element Int. Estimate Lower Upper Lfail Ufail
A1 1 1 9.0 0.6196 0.5575 0.6879 00 00O
C 1 1 1 95.0 0.0000 0.0000 0.0000 12 03
E 1 2 3 95.0 0.1735 0.1541 0.1961 00 65

In this casethe attemptsto find the Cl'son A 1 1 1 appear successful. To find thelower Cl
onC 1 1 1, two refitting attempts were made, and the final solution received IFAIL=1
which is probably the right answer. For the upper Cl on C 1 1 1, three refits were
undertaken, and the solution was | FAIL=0, again probably the right answer. Thelower CI
onE 1 1 1, seemsto befine, but the upper one definitely shows signs of difficulty, with 5
attemptsand still an IFAIL of 6. Onewould do well to check thisupper confidenceinterval
by removing the Interval commands and fixing thevalueof E 1 2 3 at .1961 to see whether
the fit function deteriorated by 3.84 chi-squared units. It is easy to perform such atest for
afree parameter in matrix element £ 1 2 3, using the statement

Drop ©@.1961 E 1 2 3

just before the End of the last group.

It is more difficult to test the accuracy of the Cl if the matrix is a computed matrix. Inthis
case, one way to do it would be to add a constraint group to the job, like this:

Constraint group to fix E 1 1 1 at .1961

Constraint

Matrices = Group 1

Kfull 11

Z full 14

End Matrices;

Matrix K .1961

Matrix Z2 32 3 ! to get the submatrix of E from element 2,3 to element 2,3
Constraint \part(E,2) = K ;
End Group

Again, the decrease in fit due to this constraint should be examined by subtracting the +?
goodness of fit found in the unconstrained model from the fit found with the constraint in
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place. Should the difference not be approximately 3.84, one might wish to establish the
confidence interval manually by trying different values than .1961 in Matrix K (or Drop).

Standard Errors

Syntax:
Option SErrors
This option is being phased out in favor of confidence intervals (see p. 96).

Mx uses the numerical estimates of the hessian matrix of the parameters to provide
approximate standard errors on the parameters. While it gives estimates consistent with
those of other programs under a variety of conditions, this option is not reliable. Under
these circumstances, standard errors may appear much too small. The sameistrueif the
function precision is low (which may happen if, e.g., the fit function involves numerical
estimation of integrals). The problem issometimes overcome by altering the error function
precision parameter, withOption Err=value. By default it isset closeto machineaccuracy;
setting it to 17%° (or larger) may correct problems with totally unrealistic estimates of
standard errors.

- Standard errors do not work correctly when non-linear constraints are imposed with
constraint groups.
Again, assessing significance and standard errorsdirectly through changesin the model can
provide morerobust estimates. Itispossibleto get Mx to doing thisfor you, but it requires
some subtle programming (see example conf.mx). We hope to implement the method in a
more user-friendly way soon.

Randomizing Starting Values

Syntax:
Option THard=n
wheren is a positive integer

If the parameter THard is set using TH=n where n is a positive integer, Mx will generate
random starting values for all parameters and attempt to fit the model again. This attempt
islikely to fail if no bounds are specified, because the default boundaries are -10000 and
+10000, and the random valueswill be random from within these bounds. Most optimizers
fail if starting values are too far away from the fina solution; MXx has shown greater
tolerance than LISREL in this respect.

Testing I dentification

THard can be very useful when exploring the identification of structural equation models.
If data are generated with particular fixed values for the variable parameters (E,), then
optimization from adifferent set of starting values (E ,) should giveasol ution of theoriginal
values (E,). This can be tested a number of times using THard. If sensible bounds are not
given for the parameters, thistest will likely fail because E , will not be recovered. Thekey
to underidentification is finding a solution that fits perfectly, but with a parameter vector
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other than E,. If thisis the case, the hypothesis that the model is identified has been
falsified. Finding a number of solutions at E , does not prove identification of the model,
it merely increasesthe support for the hypothesisthat it isidentified. Of course, thismethod
does not show that the model has been specified correctly; acompletely misspecified model
may be identified. See Option check below for another method.

Automatic Cold Restart

Syntax:
Option THard=-n
wheren is a negative integer

During optimization, an estimate of the covariance matrix of the estimated parameters is
constructed. Sometimes, this covariance matrix is inaccurate and optimization fails to
converge to the correct solution, a problem that is usually flagged by an IFAIL parameter
of -6. Option TH=-n can be used to restart the optimization n timesform the current solution,
but with the parameter covariance matrix reset to zero.

Jiggling Parameter Starting Values

Syntax:
Option Jiggle

Prior to optimization, parameter start values can be jiggled. Jiggling replaces each
parameter start valuex, with x.+.1(x+.5). Thisoption can beuseful to nudge Mx away from
asaddle point which can be troublesome when using numerically estimated derivatives. An
example of a common saddle point is when parameters are started at or very near to zero,
and the estimates x and -x have the same effect on the function value. Such situations are
common in structural equation modelswhich feature quadratic formsin their expectations;
the ACE genetic model is one such example.

When used in conjunction with a negative THard parameter, jiggling will occur each time
therefit isattempted. Thismay cause estimatesto drift from their initial values, especialy
if the parameter concerned has no effect on the fit function.

Confidence Intervalson Fit Statistics

Confidence intervals on the chi-squared statistic are obtained using a single parameter
optimization method (Steiger and Lind, 1980). The 100(1-a)% confidence limits for the
noncentrality parameter lambda of a < df,|lambda distribution are obtained by finding the
values of lambda that place the observed value of the Chi-square statistic at the 100 (a/2)
and 100(1-a/2) percentile points of a+* df ,lambda distribution.

Y ou can check the Mx results with the useful link at

http://www stat.ucla.edu/cal cul ators/cdf/ncchi2/ncchi2cal c.phtml

by entering the chi-sg and df and the p level (.95 or .05) to find the upper and lower bounds
for 90% confidence intervals.
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These confidence interval s on the chi-squared are used directly to compute the confidence
intervals for the AIC and RMSEA statistics.

Comparative Fit Indices

Syntax:
Option Null=<+*><df>
where +? and df are the statistics of a null model

Users may supply the results of fitting a null model (usually a simple diagonal model of
variances, but others are possible) with the null command which will extend the output in
the following way:

Fit statistic Estimate

Tested Model fit >>>>>>>>>>>>> 4.73426

Tested Model df >>>>>>>>>>>>>> 4.00000

Null Model fit* >>>>>>>>>>>>>>  1563.94400

Null Model df* >>>>>>>>>>>>>>> 6.00000

Normed fit Index >>>>>>>>>>>>> 0.99697
Normed fit Index 2 >>>>>>>>>>> 0.99953
Tucker Lewis Index >>>>>>>>>>> 0.99929
Parsimonious Fit Index>>>>>>>> 0.66465
Parsimonious Fit Index 2 >>>>> 0.02940
Relative Non-centrality Index> 0.99953
Centrality Index >>>>>>>>>>>>> 0.99961

*User-supplied null-model statistic

They are calculated as follows:

NFI * (F\&F)/Fy Bentler and Bonett,1980
NFI, " (F &F;)/(F &df.)
TLI = ((F/df ) &(F/df))/((F,/df )&1.0) TuckerandLewis, 1973
PFI * (df/df )NFI Mulaiket.al.,1989
PF1, * 2NF1(df,)/(p(p&1))
RNI * ((F &df,)&(F,&df.))/(F &df,) McDonaldandMarsh,1990
Cl * exp(&.5((F;&df;)/N)) McDonald,1989

whereF, and F; arethe goodness-of-fit (chi-squared) statisticsrespectively obtained under
the Null and Tested model, and which have dfy, and df; degrees of freedom. N isthe total
sample size (over al groups) and p is the number of free parametersin the model. Tanaka
(1993) discusses their relative merits, and Williams & Holahan (1994) conducted an
empirical study which gave support to the use of AIC in many contexts. Marsh et al. (1997)
favor TLI as acomparative fit satistic. Clearly, no fit statisticisideal in all situations.

Automatically Computing Likelihood-Ratio Statistics of Submodels

Syntax:
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Option ISSAT or
Option SAT=+*,df

When fitting multiple model sto the same data, it is common to want to know the difference
in fit, the difference in degrees of freedom, and the probability associated with these
differences. Option Issat specifiesthe current model asamodel against which subsequent
modelsfitted in the same run will be compared. This model does not have to be saturated,
in the sense of having a free parameter for every observed statistic; it merely hasto be a
supermodel against which subsequent submodelswill be compared. In addition, thefitting
function being used should be asymptotically < distributed, or be a-2 log-likelihood. Most
Mx fit functions are of thistype, but user-defined fit functions may not be.

Sometimesfitting asaturated model at the start of asequence of analysesiscomputationally
burdensome. Asan alternative, the goodness-of-fit chi-squared and degrees of freedom of
a supermodel may be directly entered using Option SAT. All subsequent models will be
compared against this supermodel.

Check Identification of M odel

Syntax:
Option Check

By default, Mx does not test identification of models via examination of the rank of the
hessian matrix of parameter estimates. Option check doesthis, but it should be noted that
theresultscan giveeither false positives or fal se negatives. Whilethisisto some extent true
of programs that use exact derivatives, it is more true of Mx which uses numerically
estimated derivatives. When Option check isinvoked, Mx computes the eigenvalues and
eigenvectors of the hessian matrix, and uses this information to assess potential areas of
underidentification. As stated elsewhere - especially in Joreskog's early papers - a better
procedure isto attempt to find alternative sets of parameter estimates that give an equally
goad fit to the data (which is proof of underidentification). Mx provides Option TH=to
facilitate this proof. ldentification should be tested on theoretical grounds whenever
possible (see texts by Neale & Cardon (1992, p.104); Bollen (1992) and Pearl (1994) for
discussion of these methods.

Changing Optimization Parameters

MXx uses NPSOL, written by Walter Murray and Philip Gill at Stanford University, to
perform numerical optimization in the presence of general linear, non-linear and boundary
constraints. Mx attempts to choose suitable values for the parameters that control
optimization, taking into account the number of parametersto be estimated, the numerical
precision of the function value, and so on. However, the enormous variety of types of
optimization tasks that can in principle be requested with MXx means that the automatic
selection of these parametersis not alwaysideal. In addition, difficultiesin optimization
may reguire examination of the optional output that NPSOL can generate. Mx alowsthe
user to print these data and to alter the parameters as needed. There are also facilities for
automatically performing some of the sol utions of optimization difficulties suggested inthe
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NPSOL manual (see also routine EO4UCF in the NAG manual).

In general, parameters have been set for NPSOL on the cautious side, so that many of the
warning messages about |FAIL parameters being non-zero are spurious. This seems better
than being misled by the program giving the wrong answer without warning.

# |FAIL=1 (code GREEN), most likely, the correct solution.

# |FAIL=4 (code BLUE - it ran out of breath), for which the Iterations=n may be used.

# |FAIL=3 (code RED - bad news) occursin connection with constraints, normally they
have been misspecified so that they are impossible to satisfy. Sometimes they are
possible to satisfy but the starting values make it difficult for the optimizer to find a
region where they are satisfied. IFAIL=3 can always be cured by making certain that
the starting values satisfy all non-linear constraints, the command Fix all placed near
the end of the script is usefu in this regard.. Printing the residuals in the constraint
groups often helps.

# |FAIL=6 (also code RED - take note) isthe most tricky. Sometimesit occurs because
of ill-conditioning of the Hessian, which can be verified by examination of the NAGDUMP
output file (see page 102). A solution here may be to use the TH=1n which requests
optimization from the current ‘solution’ with the Hessian reset to the identity matrix,
ntimes. On other occasions, it may appear because of insufficient numerical precision,
yet still be at theright place. If aparameter in your model isnot identified, IFAIL=6is
quite likely.

Appropriate choice of starting valuesisawaysrecommended. Many usersstart parameters
at zero because thisis the default value of free matrix elements. In practice, MX attempts
to avoid so doing by starting any parameter in the range -.01 to .01 at .01. The user can
assist this process with the Jiggle option to further nudge the parameter value away from
apossible saddle point at zero (see page 99). But best of all is a reasonable guess at the
parameter estimates that satisfies any non-linear constraints.

Setting Optimization Parameters

NAG=n, Default: NAG=0

If this statement appears on the Options line, the technical output from NPSOL is printed
in afile called NAGDUMP.OUT. The value n controls the Mgjor Print Level, the higher the
number the more verbose the output file. Minimum output is written with NAG=1 and
maximum is written with NAG=30. MX prints the initial and final value of the function. If
option DB is present (see bel ow) more detail ed information on the parameter estimateswill
be printed. Mx rescales all functionsto 1.0 to assist general optimization, so the function
value printed by NPSOL is a proportion of thisinitial value.

Feasibility=n, Default = .00001

Will control the Nonlinear Feasibility Tolerance, i.e. FEAS=r defines “the maximum
acceptable absolute violations in linear and nonlinear constraints at a‘feasible’ point; i.e.,
alinear constraint is considered satisfied if its violation does not exceed r” (NAG, 1990).
It has no effect if there are no nonlinear constraints.
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Iterations=n, Default = 100
Controls the number of major iterations. Should be increased if IFAIL=4 error messages
occur.

Linesearch=r, Default = .9 if no non-linear constraints are present, otherwise, .3
Linesearch tolerance.

Optimality=r, Default = 1™ where n is approximately In(F, ) where F, is the function
value at the starting values
Sets the optimality tolerance, a parameter controlling the accuracy of the solution.

Stepsize=r, Default = 10000
Infinite step size.

Function precision=r, Default = 1™® where n is approximately In(F, ) where F, is the
function value at the starting values

Specifiesfunction precision. In general thisshould be set at alower valuethan the required
precision of the solution.

Obtaining Extensive Debug Output: DB=1

If the parameter DB=1 is set on the output line, together with NAG=n where n is greater than
zero, additional information will be written to the NAGDUMP.OUT file. For each evaluation of
the function to obtain the gradient of the parameter vector, the fit function value for each
group, the total fit function, and the values of all the parameters are printed. On each
evaluation of the function to obtain the constraint functions, the values of all the parameters
and the constraint functions are printed. Note that the order of the parametersin the vector
corresponds to the order used by NAG during optimization and not the order of parameter
specifications given by the user, or printed by MX. Note also that using this option for
problems with more than a few parameters can result in enormous NAGDUMP.OUT files.
Examination of the first and last few iterations can be very helpful in identifying errant
parameters whose extreme values may be causing floating point errors that make the
program crash.

5.4 Fitting Submodels: Saving Matricesand Files

One of the powerful features of M x isitsability to start again whereit left off. Anexample
of this has already been described on pages 98 and 101 above, where repeated attempts to
optimizeare made either from the current solution or from randomized starting values. Here
we describe how repeated fits may be made from the solution, allowing for changesin the
model. Thiscan bedonemanually, writing out matricesto files, or automatically within the
samerun, using themul tiple command, or from asaved binary file. For large problems, use
of binary files can save alot of time.

Fitting Submodels using Multiple Fit Option

Syntax:
Option Multiple
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If the keyword Multiple isincluded on the Options ling, the next Mx input file is assumed
to have aspecial form. It will consist of a single group, ending with an Options line. The
only commands that may be used under theMultiple option areSpecification, Pattern,
Matrix, Value, Start, Equate, Fix, Free and Options. Data may not be changed,
matrices may not be added, and the matrix formulae specified in the Covariance or Means
statement cannot be altered. At some time in the future, these restrictions may be lifted.

There is no group structure to the input stream following an Multiple command; al
maodifications to the model must refer to matrices with anumber identifying the particular
group in which the matrix is to be found. This changes the usua form of the
Specification, Matrix and Pattern commands to include a group specification, which
must be placed directly after the keyword, before the letter indicating the matrix. Thus
Specification A

becomes

Specification 2 A

if A was specified in group 2. As an example of the use of this command, consider the
simplefactor model presented on page41. We could test the significance of the covariance
of the two variables by fixing parameter #2 to zero. Obviously this could be achieved by
modifying the entire input file and running it separately, but the following will fit both
modelsin one run.

Simple MX example file
Data NGroups=1 NObservations=150 Nlnput_vars=2
CMatrix

1.2 .8 1.3

Matrices

AFull 21

D Diag 2 2
Model A*A®" + D /
Specification A 1 0
Specification D 0 3
Options Multiple RSiduals

End
Specification 1 A 12

End

Considerable computer time can be saved using Multiple, since the solution of a model
often has parameter estimateswhich are close to those estimated under nested model s of the
sametype. Ingeneral, werecommend fitting model sstarting with the simplest, and working
up to more complex models. When working from complex to simple, the Drop command
(see next section) can beuseful. If you have morethan asingle set of nested modelsto test,
saving the general model in an Mx binary save file (see page 105) can save considerable
time and effort.

Multiple fit mode has always made revising the model and refitting from earlier solutions
easy to do by changing the parameter contents and values of matrix elements. It is now
possible to change matrix formulae and other characteristics of a group, using the #group
3 syntax. Options or matrix formulae supplied after this command would apply to group 3.
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For example, suppose that after fitting amodel --- perhaps one that took daysto run --- we
might discover that we had accidentally forgotten to request residuals from group 5. If, in
anticipation of this or similar errors, we had issued a save command:

< usual model commands >

Option Multiple

End I<- end statement of last group

Save incase.mxs
End

It would be possible to retrieve the solution, add the appropriate option, and re-run:
Title - revise options to see residuals

Get incase.mxs

#group 5

Option RSiduals

End

This type of strategy may be useful to obtain additiona fit-statistics for null-model
comparisons.

Dropping Parametersfrom M odel

Syntax:
Drop {@value} <parnumlist><elementlist>

where<parnumlist>isalist of parameter numbersasused inthe Specification command,
and @value isan optional valueto fix at, and Matrix element list isa list of matrix elements

Quite often, equality constraints between parameters lead to model specifications with the
same parameter in many different matricesor several groupsor both. Fixing all occurrences
of the parameter with the Fix parameter can be time-consuming and error prone, so theDrop
command may be used instead. By default, all parameters whose specification number
matches a number in the list following the Drop command will be fixed to zero. For
example:

Drop 5 8 7

Drop 11 to 20

Drop X 2 1 3

would fix to zero all occurrences of parameters5, 8, 7, 11 through 20 and all occurrence of
whichever parameter isspecifiedinelementX 2 1 3. Notethat matrix addresses cannot be
used in thiscommand. It ispossibleto supply an optional value to the drop command, so
that for example

Drop @.5 2 3

would fix all occurrences of parameters 2 and 3to 0.5.

Reading and Writing Binary Files

Syntax:
Save <filename>
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Get <filename>
where <filename> is the name of the file to be saved or retrieved - the extension .mxsis
recommended

When the multiple fit option is implemented (see page 103) the entire input job
specifications, data, and estimates may be stored in binary format for rapid retrieval and
estimation in subsequent fitting of submodels. Note that Save must follow the entire job
specification. Thusfor example the following would save the results of fitting the model,
together with the complete model specification, in the file acesave .mxs:

I Mx commands for first job precede this line
Option Multiple

End

Save acesave.mxs

I First command in multiple fit number 1

Fix all

End

The Fix ALL command simply stops the optimizer from trying to improve on the current
solution by fixing all the parameters. To usethisbinary save filein another commandfile,
we could use the following:

Title - using a binary file

Get acesave.mxs

Free A1 23

End

By retrieving abinary file, Mx isautomatically in the Multiple fit mode, so modifications
can be made to the model and a further series of hypotheses tested. If Get isused in a
separate job, atitle line is required before this statement. Normally, parameter estimates
after model fitting are stored, but if it is desired to save the user's starting values, it is
possible to set the number of iterations to zero, use Multiple, and Save the starting values.

Writing Matricesto Files

Syntax:
MXa= <Filename>

where a isthe single-letter name of the matrix to be written, or one of %E %M %P %V

MX will write matrices to files with this command. The first line has header information,
including the group number, the matrix name, type and dimensions. The matrix elements
are then written in FORTRAN format (6D13.6). Thisfileformat isfully compatible with
LISREL, so matrices output by Mx can be read in as starting values for LISREL and vice
versa (see page 77). If the matrix name is %E, the expected covariance matrix will be
written to thefile. If the matrix name is %M, the expected mean matrix will be writtento a
file. For groups with raw maximum likelihood fit functions, %P will write a series of
columnsof information about thelikelihood of individual pedigrees(seepage 107). Finaly,
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itisalso possibleto savea VL file, with the%v keyword. Whilethisisnot normally useful
(since it would recreate the original data file), following the select command it can be
advantageous. Subsequent reading of the selected data can be faster than reading the whole
dataset and performing selection again.

Formatting and Appending Matrices Written to Files

Syntax:

Option Append

Option Format=(F)

whereF isalegal FORTRAN format

The default 6D13.6 format used by Mx to write matrices to files may be changed with
Option FORMAT. It is best to consult a FORTRAN language reference manual for full
details on legal formats. In brief, the general form for numbersis Fw.d where F indicates
floating point, w is total width, and d is the number of digits after the decimal point. A
comma delimited list of formats may be provided. Spaces may be inserted with the syntax
nx wheren isthe number of spaces provided, and parentheses may be used to repeat format
specifiers. For example, 6(F5.2,2x) would be used to write numbers in 5 spaces with 2
decimal places, and followed by 2 spaces. After writing 6 such numbers, anew linewould
be used to write subsequent numbers.

Option Append causes all matricesto be appended to existing files of the same name, if they
exist. Theformat isonly written once, if the file does not previously exist.

Writing Individual Likelihood Statisticsto Files

Syntax:
MX%P= <filename>

A valuable feature for identifying outliers and possible heterogeneity in raw dataisto save
theindividual likelihood statisticsto afile. These datamay subsequently be inspected with
other software to produce half-normal plots and the like. The syntax for this follows the
writing of amatrix to afile, but we separate it because of the complexity of the output. For
each vector in the rectangular or V. datafile, Mx outputs eight columns of data:

1. -2InL thelikelihood function for that vector of observations

2. the square root of the Mahalanobis distance, Q = (x 1N O (x 1 )

3. aestimated z-score Z = ((Q/n, )M(U/3) - 1+ 2/(9n;)) (9n, 12)*(.5) where n, is the number
of individualsin the ith data vector

4. the number of the observationin the active (i.e. post selection) dataset. Note that with
selection this may not correspond to the position of the vector in the datafile

5. the number of data pointsin the vector (i.e. the family sizeif it is a pedigree with one

variable per family member)

the number of timesthelog-likelihood wasfound to beincal culable during optimization

000 if the likelihood was able to be evaluated at the solution, or 999 if it was

incalculable

No
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8. themodel number if there are multiple model s requested with the NModel argument to
the Dataline

Results from all raw data groups are written to the same file (the beginning of another
group's information can be seen from a change in the case number). The third item in the
list is especially useful for detecting outliers when there are missing data, being relatively
independent of the number of data pointsin the vector in question (Johnson & Kotz, 1970;
Hopper & Mathews, 1982). Of two formulae for computing the z-score (the other being Z,
=(2Qi)* - (2n, - 1)) wefound Z to be much closer to anormal distribution. Half-normal plot
of this statistic should (for multivariate normal data) show aclose fit of each data point to
its expected value.

Another valuable role for this output is to pinpoint particularly nasty outliers that prevent
optimization from succeeding, usually causing an IFAIL=-1 problem. Searching through
thesaved individual likelihood filefor the string ' 999" (note the leading and trailing blanks)
will find cases where the likelihood could not be evaluated for the particular set of
parameter estimatesin use.

Creating RAMpath GraphicsFiles

Syntax:
Draw= <filename>

Structural equation models may be specified very simply in terms of three matrices. The
first matrix S, issymmetric and specifiesall thetwo-headed arrows between all thevariables
(both latent and observed) inthediagram. The second matrix A, isasymmetric and specifies
al the single-headed arrows between all the variables in the model. Causal paths from
variable | to variable | are specified in element A;. For example, a path from variable 1 to
variable 4 would be represented in element (4,1) of thismatrix. Thethird matrix F, isused
to filter the observed variables from the latent variables for the purpose of model fitting.
The development and application of this approach is succinctly described in the RAMpath
manual (McArdle & Boker, 1990).

Iff° you specify amodel with thesethree matrices, F, A and S, then RAMpath graphicsfiles
may be written and saved to afile with the Draw command. Thisfile, largely consisting of
aRAMpath input_model command, may be used asinput for RAMpath to draw a diagram
of your model to view or to produce publication-quality output on a postscript printer.
Conversely, the command save_mx in RAMpath will generate an MX script. The Mx
graphical interface, currently in alpha-test, provides an alternative to using RAM path.

% Iff with two f's means ‘if and only if’
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6 Example Scripts

What you will find in this chapter

# Example scripts
# Brief description of the models and methods being used

There are very many different ways of setting up any particular model in Mx. Aswith any
programming, thereisacompromise between compactnessand comprehensibility that isset
by the individual user. The most compact files are often the least comprehensible; the
longest ones may be prone to typographical errors, and can be very boring to check.
Judicious use of comments can make for a brief but comprehensible input file.

6.1 Using Calculation Groups

The examples in this section do not fit models; matrix formulae are simply evaluated and
the results are printed.

General Matrix Algebra

Suppose we wish to find the inverse of the symmetric matrix:

1
23 2
34 45 3.

The following input file could be created:

Title: Inverting Symmetric 3 x 3 example file
Calculation NGroups=1
Begin Matrices;

A Symm 3 3
End Matrices;
Matrix A
1.
.23 2
.34 .45 3.
Begin Algebra;
B=A;
End Algebra;
Options MxB=inverted.mat
End

The output matrix inverted.mat contains the nine elements of the matrix B, which isthe
inverse of A.
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Assortative Mating ‘D’ Matrix

Multivariate phenotypic assortative mating (Van Eerdewegh, 1982; Vogler, 1985; Carey,
1986 Phillips et al., 1988; Fulker, 1988) leads to a predicted covariance matrix between
husbands' and wives phenotypes of the form:

R, R.DIR,
R,DR, R

w

Thusthe matrix D can be obtained fromR,,''"M R}, whereM =R,, DR, , the off-diagonal
block of correlations between phenotypes of husbands and phenotypes of wives. The
following Mx input file will calculate matrix D.

#define nvar 3
Calculation of full D matrix, 3 phenotypes husband & wife
Calculation NGroups=1
Begin Matrices;
A Symm nvar nvar I Covariance of wives" variables
B Symm nvar nvar I Covariance of husbands® variables
C Full nvar nvar I Covariance between husband & wife variables
End Matrices;
Matrix A
1
4.9
.3 .51.1
Matrix B
1.2
.42 1.
.3 .47 .9
Matrix C
4012
.05 .3 .12
.22 11 .5
Begin Algebra;
D= A*C*B™ ;
End Algebra;
End

Therelevant part of the output file looks like this:
CALCULATION OF FULL D MATRIX, 3 PHENOTYPES HUSBAND & WIFE
Matrix A
1.0000
0.4000 0.9000
0.3000 0.5000 1.1000
Matrix B
1.2000
0.4200 1.0000
0.3000 0.4700 0.9000
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Matrix C
0.4000 0.1000 0.2000
0.0500 0.3000 0.1200
0.2200 0.1100 0.5000
Matrix D
0.4302 -0.2854 0.1497
-0.3471 0.7770  -0.5237
0.1361 -0.4908 0.7829

Pear son-Aitken Selection Formula

Thisexampleisalittle more complex. In 1934, Aitken generalized Pearson's formulae for
predicting the new mean and variance of variable when selection is performed on a
correlated variable. Aitken'sdelightful paper shows how selection on avector of variables,
X, leads to changes in the covariance of correlated variables X, that are not themselves
selected. If the original (pre-selection) covariance matrix of Xg is A, and the original
covariance matrix of X, isC, and the covariance between X, and X isB, thentheoriginal
matrix may be written

if selection transforms A to D, the whole new matrix is given by:

D | DA'B
BIA''D | CIBNA'IAIDA'YB

Likewise, if the original meansare (x:x,)’ and selection modifies x to X, the vector of
means after selection is given by:

X, A'B (X &X)

where (x &X) is the deviation of the means of the selected variables from their original
values.

#Ngroups 1
Pearson Aitken Selection formulae
I ldea is to give original means and covariances, and get new ones

Calculation

Begin Matrices;

A Symm 2 2 ! Original covariances of selected vars

B Full 2 2 ! Original covariances of selected and not-selected vars
C Symm 2 2 ! Original covariances of non-selected vars

D Symm 2 2 ! Changed A after selection

S Full 21 ! New means of selected vars (assume initially zero)

N Full 2 1 ! Original means of not-selected vars

End Matrices;
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1. .7 1.

.6 .42 .42 .6
.352 1.
401

Matrix
Matrix
Matrix C 1.
Matrix D 1.
Matrix N 3 4
Matrix S 2 1

Begin Algebra;

V= D| D*A™*B_ ! Note that underscore above is UNDER operator

B"*A*D| C-B"*(A-A*D*A)*B ; ! not A with a horizontal bar over it

M= N + A™*B*S ;

End Algebra;
End

=Z 00 W >

The new covariance matrix and mean vector are printed as the matricesV and M.

6.2 Model Fitting with Genetically Infor mative Data

The examplesin this section demonstrate elementary use of Mx to fit modelsto datainthe
form of variance-covariance matrices.

ACE Genetic Model for Twin Data

If data are collected from identical or monozygotic (MZ) twins and from fraternal or
dizygotic (DZ) twins, it is possible to estimate parameters of a model that includes the
effects of additive genes (A), shared or family environment (C) and random or unique
environment (E). Thismode is shown in Figure 6.1 as a path diagram.

Figure6.1 ACE genetic model for twin data. Path model for additive genetic (A),
shared environment (C) and specific environment (E) effects on phenotypes (P) of pairs of
twins (Tl and T2). The parameter disfixedat 1 for MZ twinsand at .5 for DZ twins. All
latent variables have a variance of 1.0.
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The approach used here generalizesto the multivariate case, by increasing nvar and twonvar
and the datafiles. Heath et a. (1989) allow for phenotypic interaction, but thisis left for
alater example (p. 120)

#Ngroups 3
#define nvar 1 ! number of variables
#define twonvar 2 ! two times nvar

I AC E model fitted to the Heath et al (1989) data on alcohol consumption
G1: model parameters
Calc
Begin Matrices;
X Lower nvar nvar Free
Y Lower nvar nvar Free
Z Lower nvar nvar Free
W Lower nvar nvar Fixed
HFull 11
QFull 11
End Matrices;
Matrix H .5
Matrix Q .25
Begin Algebra;
A= X*X" ;
C= Y*Y” ;
E= Z*Z° ;
D= W*W”> ;
End Algebra;
End

genetic structure

common environmental structure
specific environmental structure
dominance structure

G2: Monozygotic twin pairs

Data NInput-vars=twonvar NObservations=171
Labels Alc_tl Alc_t2

CMatrix

1.28 0.766 1.194
Matrices= Group 1
Covariances A+C+D+E | A+C+D _
A+C+D | A+C+D+E ;
Options RSiduals
End

G3: Dizygotic twin pairs

Data NInput_vars=twonvar NObservations=101
Labels Alc_tl Alc_t2

CMatrix

1.077 0.463 0.962
Matrices= Group 1
Covariances A+C+D+E | H@A+C+Q@D _
H@A+C+Q@D | A+C+D+E ;

Start .6 All

Options Multiple RSiduals

End
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Power Calculation for the Classical Twin Study

Our next example uses the same model as in the preceding section, but in this case we
calculate the power of the classica twin study to detect the effects of common
environmental variation. The particular case we wish to examine is where the true
population variance comprises 20% additive genetic, 30% shared environment, and 50%
random environment variance, but we fit amodel without shared environment variation to
simulated MZ and DZ covariance matrices. This example is discussed in some detail in
Neae & Cardon (1992); here we reproduce their results with asimple script.

There aretwo stagesto the power calculation. First, fixed values of the parametersa, ¢ and
earegiven, and atwo-group Mx script simply cal cul atesthe expected covariances under the
model, and savesthemtotwo files, mzsim.cov and dzsim.cov. Thenext problem (preferably
inthe sameinput file, though thisisn't essential) fitsamodel of additive genetic and random
environmental variance only. The complete input file looks like this:

I A C E model for power calculation

#Ngroups 3

I Step 1: Simulate the data

! 30% additive genetic  (.54772=.3)
! 20% common environment (.44722=.2)
! 50% random environment (.70712=.5)
G1: model parameters

Calc

Begin Matrices;

X Lower 1 1 Fixed ! genetic structure

Y Lower 1 1 Fixed ! common environmental structure

Z Lower 1 1 Fixed ! specific environmental structure
HFull 11

End Matrices;
Matrix X .5477
Matrix Y .4472
Matrix Z .7071
Matrix H .5

Begin Algebra;
A= X*X" ;
C= Y*Y* ;
E= Z*7° ;

End Algebra;

End

G2: MZ twin pairs
Calc Nlnput vars=2
Matrices= Group 1
Covariances A+C+E | A+C _
A+C | AHCHE ;
Options MX%E=mzsim.cov
End
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G3: DZ twin pairs
Calc Nlnput vars=2
Matrices= Group 1
Covariances A+C+E | H@A+C _
H@A+C | A+C+E ;
Options MX%E=dzsim.cov
End

I Step 2: Fit the wrong model to the simulated data
#Ngroups 3
G1: model parameters
Calc
Begin Matrices;
X Lower 1 1 Free I genetic structure
Y Lower 1 1 Fixed ! common environmental structure
Z Lower 1 1 Free I specific environmental structure
HFull 11
End Matrices;
Matrix H .5
Begin Algebra;
A= X*X" ;
C= Y*Y* ;
E= 2*Z° ;
End Algebra;
End

G2: MZ twin pairs

Data NInput vars=2 NObservations=1000
CMatrix Full File=mzsim.cov

Matrices= Group 1

Covariances A+C+E | A+C _

A+C | AHCHE ;
Option RSiduals
End

G3: DZ twin pairs
Data NInput_vars=2 NObservations=1000
CMatrix Full File=dzsim.cov
Matrices= Group 1
Covariances A+C+E | H@A+C _
H@A+C | A+C+E ;

Start .5 All
Options RSiduals Power= .05,1 I .05 sig level & 1 df
End

Therelevant part of the output is at the end, where we seethat for the specified sample sizes
of 1000 pairs each of MZ and DZ twins, the +* goodness-of -fit is 11.35, as found by Neale
& Cardon (1992):
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Chi-squared fit of model = 11.349
Degrees of freedom = 4
Probability = 0.023

Akaike®s Information Criterion = 3.349

Power of this test, at the 0.0500 significance level with 1. df is 0.920572
Based on your combined observed sample size of 2000.

The following sample sizes would be required to reject the hypothesis:

Power Total N

.25 290.
.50 677.
.75 1223.
.80 1383.
.90 1852.
.95 2290.
.99 3238.

Because we requested that this statistic be treated as a < for 1 degree of freedom for the
purposes of calculating power at the .05 level of significance (Power=.05, 1), the output
gives the power of the test given the particular sasmple sizes (and MZ:DZ sample size
proportions), followed by the sample sizes that would be required to obtain certain
commonly used levels of power. The power is quite high (.92) with 2000 pairs. The
required sample sizes to reach certain power levels from .25 to .99 are also shown.

RAM Specification of Model for Twin Data: Graphics Output

Hereisatwo group example, a phenotypic interaction PACE model (see page 120 for more
details), specified using the three matrix approach of McArdle & Boker (1990). Details of
this method, and the syntax of the Draw command can be found on page 108.

The title for the diagram is taken from the title of the group in the Mx input file, and the
labels for the variable are taken from labels of the columns of the S matrix. The draw
commandsin thisfile produce two files, mx.ram and dz.ram. | don't like the way RAM path
draws interaction between the phenotypes, but thereisacertain irrefutable logic in having
causal arrows always going out the bottom of avariableandinthetop. You can easily edit
the RAMpath file to get rid of the @ signs if you like. Note that specifying models ala
RAMpathisdidactically very clear but computationally inefficient, since theinverse of the
maximally dimensioned A matrix is required.

I Phenotypic interaction PACE model, Heath 1989
I Demonstration of RAM specification and output
Group 1: MZ twins
Data NGroups=2 NInput_vars=2 NObservations=171
CMatrix Symm File=alcmz.cov
Matrices
S Symm 8 8
I Iden 8 8
A Full 8 8
F Zlden 2 8
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End Matrices;
Matrix S
1

OO PFr OO
O OO
O O O
o O

1

01

0000000O0

00000000

Label row a al cl el a2 c2 e2 pl p2
Label col a al cl el a2 c2 e2 pl p2
Label row s al cl el a2 c2 e2 pl p2
Label col s al cl el a2 c2 e2 pl p2

Specify A

00000000
00000000
00000000
00000000
00000000
00000000
123000014 ! This is where the parameters are
00012340

Start .6 A71A73

Covariances F*(1-A) *S*(1-A) "*F";
Options RSiduals Draw=mz.ram

End

Group 2: DZ twins
Data NInput_vars=2 NObservations=101
CMatrix Symm File=alcdz.cov
Matrices
S Symm 8 8
I Iden 8 8
A Full 8 8 = A1
F Zlden 2 8
Matrix S
1
01
001
5001

o O o
o O
o O o
o O o
o O

1
0
0o0oo0000O
Bound -.99 .9
Bound 0 51 2
Covariances F*(1-A) *S*(1-A) "*F";
Options RSiduals Draw=dz.ram
End

0
00
93
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Cholesky Decomposition for Multivariate Twin Data

Any positive definite matrix may be transformed to a product of alower triangular matrix
and itstranspose, i.e.

=T LL)

This Cholesky decomposition is unique for a given positive definite matrix O, except for
transformations of sign obtained by multiplying by diagonal matrices with elements set to
-1 or 1. It hasasimple graphic representation as apath diagram (Figure 6.2) where the first
latent factor loads on all variables, the second on all variables except thefirst, the third on
all variables except the first two, and so on.

1 1 1
Fy F,
b b, b
. bon Pai b3
Yy Y, Ys

Figure6.2 Cholesky or triangular factor model for three variables Y1, Y2 and Y3

In multivariate genetic analysis, a Cholesky (triangular) decomposition of separate genetic
and environmental covariance matrices is possible. Thus the additive genetic, shared
environment and random environment factors in the simple ACE model (Figure 6.1) have
amultivariate counterpart where the phenotypes P, and P, are replaced by vectors of
observed phenotypes, and thelatent variablesA, C and E arereplaced by vectors of factors.
The path coefficients a ¢ and e are replaced by triangular matrices of factor loadings
according to the Cholesky decomposition. Our aim isto produce a script that is very easy
to modify when the number of variables analyzed changes.

Here we use an input file that calculates the genetic, shared and random environmental
factorsin thefirst group that generates genetic, shared and random environment covariance
matrices It isthen asimple matter to form the expected covariance matrices for twin data
as partitioned matrices containing linear combinations of these matrices. It is then
simplicity itself to fix a parameter to zero, as only one character has to be changed from a
1toa0. Theexampleincludesdatafrom individual swithout cotwins (group 2), aswell as
MZ (group 3) and DZ (group 4) twin pairs. Estimatesfrom amodel such asthisdepend on
the size of the observed variances, and can be difficult to interpret. Estimates of the
proportion of variance and covariance dueto each source can be obtained using the element
division operator (%) (group 5).
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I Trivariate Cholesky "lIndependent Pathways® model

I Data are Extraversion, Neuroticism and CESD Depression
#Ngroups=5

#Define nvar 3

#Define twonvar 6

#Define nunmatched 449

#Define nMZ 456

#Define nDZ 357

G1: model parameters
Calculation NGroups=5
Begin Matrices;
X Lower nvar nvar Free I genetic structure
Y Lower nvar nvar Free I common environmental structure
Z Lower nvar nvar Free I specific environmental structure
HFull 11
End Matrices;
Matrix H .5
Start .6 All
Begin Algebra;
A= X*X" ;
C= Y*Y* ;
E= 2*Z° ;
End Algebra;
End

I Now get to the actual data, and use the results of calculations
G2: Unmatched twins

Data NInput_vars=nvar NObservations=nunmatched

CMatrix Symm File=endun.cov

Matrices= Group 1

Covariances A+C+E ;

Option RSiduals

End

G3: MZ twins with cotwins
Data NInput_vars=twonvar NObservations=nMZ
CMatrix File=endmz.cov
Matrices= Group 1
Covariances A+C+E | A+C _
A+C | AHCHE ;
Option RSiduals
End

G4: DZ twins with cotwins
Data NInput_vars=twonvar NObservations=nDZ
CMatrix File=enddz.cov
Matrices= Group 1
Covariances A+C+E | HBA+C _
H@A+C | A+C+E ;
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I By using the Kron operator every element of G is multiplied by .5
Option RSiduals
End

G5: Calculation of standardized solution
Calculation
Matrices= Group 1
I Iden nvar nvar
Begin Algebra;

P= A+C+E;

G= \sqrt(l1.P)*A;

K= \sqrt(l.P)*C;

L= \sqgrt(l.P)*E;
End Algebra;
Option RSiduals
End

PACE Model: Reciprocal I nteraction between Twins

Figure 6.3 shows a path diagram similar to the ACE model for twin data. Thereisnow a
path (1) from the phenotype of a twin to that of his or her cotwin. This is reciprocal
interaction between dependent variables. It can easily be shown (see appendix D) that a
matrix representation of this process isto usetheformulation (I 'B)*'*, where B isamatrix
whose element b, represents the causal effects of variablek on variablej. Inthis case, the
parameter | has been bounded to lie between -1 and 1, though thisis not necessary.

—
-
A 4

Figure6.3 PACE model for phenotypic interaction between twins. Path for additive
genetic (A), shared environment (C) and specific environment (E) effects on phenotypes (P)
of pairsof twins(T1land T2). Pathi modelsdirect phenotypic effects of atwin on hisor her
cotwin. The parameter aisfixed at 1 for MZ twinsand at .5 for DZ twins.
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IPhenotypic interaction
#Ngroups 3
G1: model parameters
Calc
Begin Matrices;
X Diag 1 1 Free
Y Diag 1 1 Free
Z Diag 1 1 Free
P Full 2 2
I Iden 2 2
HFull 11
End Matrices;
Specify P
04
40
Matrix H .5
Start .6 All
Bound -.99 .99 4
Bound 0 51 2 3
Begin Algebra;
A= X*X" ;
C= Y*Y* ;
E= 2*Z° ;
B=(1-P);
End Algebra;
End

model, fit to Heath 1989 data.

genetic structure

common environmental structure
specific environmental structure
interaction parameters

G2: female MZ twin pairs
Data NInput_vars=2 NObservations=171

Labels alc_tl alc_t2

CMatrix Symmetric File=alcmz.cov

Matrices= Group 1

Covariances B &(A+C+E | A+C _

A+C
Option RSiduals
End

| A+CHE) ;

G3: female DZ twin pairs
Data NInput_vars=2 NObservations=101

Labels alc_tl alc_t2

CMatrix Symmetric File=alcdz.cov

Matrices= Group 1

Covariances B &(A+C+E | H@A+C _
H@A+C | A+C+E) ;

Option RSiduals
Options NDecimals=4
End
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Scalar, Non-scalar Sex Limitation and Age Regression

The model and data in this section were taken from Neale & Martin (1989) who fitted a
model of scalar sex-limitation to data from 5 groups of twins who reported subjective
impressions of drunkennessfollowing achallenge dose of alcohol. Themodel hereinvolves
additive genetic, shared and random environment components (A, C and E; see example on
page 112, and Figure 6.1, but allows these to differ in their effects on the phenotypes of
malesand females. In addition, the regression of the phenotypeson Ageismodeled, so that
there are parametersfor the variance of age ( éi) andfor theregressions(s). A path diagram
of the model is shown in Figure 6.4.

Age P:,

Figure6.4 Model for sex limitation and age regression. Sex-limited additive genetic
(A), shared environment (C) and specific environment (E) effectson phenotypes (P) of pairs
of twins(T1and T2). Theparameter disfixed at 1 for MZ twinsand at .5 for DZ twins.
Either & or ¢ may be estimated with data from twins, but not both.

Note the use of boundary constraints to prevent the estimation of parameters of opposite
sign in the two sexes.

I Age correction
I Sex limitation model
#Ngroups 7
Gl: female model parameters
Calculation
Begin Matrices;
X Lower 1 1 Free I genetic structure
Y Lower 1 1 Free I common environmental structure
Z Lower 1 1 Free I specific environmental structure
S Lower 1 1 Free I effect of age on phenotype
V Lower 1 1 Free I variance of age
HFull 11
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End Matrices;
Matrix H .5
Begin Algebra;

A= X*X" ;

C= Y*Y* ;

E= Z*7° ;

G= S*S” ;

End Algebra;
End

G2: male model parameters

Calculation

Begin Matrices;

X Lower 1 1 Free I genetic structure

Y Lower 1 1 Free I common environmental structure

Z Lower 1 1 Free I specific environmental structure

S Lower 1 1 Free I effect of age on phenotype

V Lower 1 1 Free I variance of age

HFull 11 =H1

Begin Algebra;

A= X*X" ;

C= Y*Y* ;

E= 2*Z° ;

G= S$*S” ;

End Algebra;
End

G3: Female MZ twin pairs
Data NInput vars=3 NObservations=43
CMatrix Symmetric File=drunkmzf.cov
Labels age drunktl drunkt2
Matrices= Group 1
Covariances V*V | S*V | S*V
S*V | A+C+E+G | A+C+G  _
S*V | AtC+G | A+CHE+G ;
Option RSiduals
End

G4: Female DZ twin pairs
Data NInput vars=3 NObservations=44
CMatrix Symmetric File=drunkdzf.cov
Labels age drunktl drunkt2
Matrices= Group 1
Covariances V*V | S*V | S*V
S*V | A+C+E+G | HBA+C+G _
S*V | H@A+C+G | A+C+E+G ;
Option RSiduals
End
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G5: Male MZ twin pairs
Data NInput vars=3 NObservations=42
CMatrix Symmetric File=drunkmzm.cov
Labels age drunktl drunkt2
Matrices= Group 2
Covariances V*V | S*V | S*V
S*V | A+C+E+G | A+C+G  _
S*V | AtC+G | A+CHE+G ;
Option RSiduals
End

G6: Male DZ twin pairs
Data NInput vars=3 NObservations=38
CMatrix Symmetric File=drunkdzm.cov
Labels age drunktl drunkt2
Matrices= Group 2
Covariances V*V | S*V | S*V _
S*V | A+C+E+G | HBA+C+G _
S*V | HE@A+C+G | A+C+E+G ;
Option RSiduals
End

G7: Female-Male DZ twin pairs
Data NInput vars=3 NObservations=39
CMatrix Symmetric File=drunkdzo.cov
Labels age drunktl drunkt2
Matrices= Group 1
J Computed 1 1
Computed 1 1
Computed 1 1
Computed 1 1
Lower 1 1
Lower 1 1
Lower 1 1
Lower 1 1
W Lower 1 1
Covariances
VW] S*V | W _
S¥V | A+C+E+G | HE(X*N7))+Q@(Y*07))+(S*T7)) _
TW | HE(N*X"))+Q@(0*Y*))+(T*S”) | J+K+L+M ;
Start .5 All
Start 100 V111Vv211
Bound 05123678
Option RSiduals
End

A2
C2
E2
G2

X2
Y2
z2
S2
V2

S v o=Z=2=r X
m o mn
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Multivariate Assortative Mating: Modeling D

In this section we return to the transformation of the data described on page 110. The
guestion is now, how do we fit a model with parametersin the D matrix, so that we can
explore the significance of marital assortment both within and between variables. For
example, is there selection of wealthy men by attractive women, or is it just that
attractiveness and wealth are correlated, and partners choose each other on the grounds of
wealth alone? Neale & McArdle (1990) published atransformation of the matrix eguation
on page 110 which allowed thefitting of LISREL and COSAN modelsto marital data. The
LISREL implementation of the model is not straightforward, involving phantom latent
variables (Rindskopf, 1984). However, the model isvery easy to implement in MX, asis
shown below. We have already shown how estimates of parametersinthe D matrix may
be obtained directly; herewe show how to test specific hypothesesabout direct and indirect
homogamy. Phillips et al. (1988) reports data on general intelligence, educational level,
extraversion, anxiety, tough-mindednessand independencein both husbandsand wives. The
first diagonal element of D thereforerepresentsdirect homogamy for intelligence; by fixing
this parameter to zero we test the statistical significance of the process.

#Ngroups 1
Assortative mating: Phillips data, Test that D 1 1 is zero
Data NInput vars=12 NObservations=334
CMatrix File=asmat.cov
Begin Matrices;
H Symm 6 6 Free
W Symm 6 6 Free
D Full 6 6 Free
End Matrices;
Start 1. H11H22H
Start 1. W11WwW22W
FixD11
Covariance
H | H*D**W_
W*D*H | W /
Option RSiduals
End

6.3 Fitting Modelswith Non-linear Constraints

Principal Components

Any symmetric matrix C may be decomposed to aproduct ABANwhereB isareal diagonal
matrix and A isareal orthogonal matrix, i.e. AAN=I. The elements of B are eigenval ues of
C and the columns of A arethe eigenvectorsof C. In generd, if we fitted amodel ABAN
where A was full and B was diagonal, it would be underidentified, since there would be
more parametersin the model than in the observed covariance matrix C. However, we can
supply the identifying constraints that A is orthogonal. In the Mx input file, these
constraints areimposed in group 2, by setting AAN!I=0. Thisisnot an efficient method of
obtaining eigenvalues and eigenvectors of a matrix, but it does highlight non-linearly
constrained optimization. For eigenvalue and eigenvector functions, see Table 4.5.
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#Ngroups 2
Principal components ABA" with constraints to keep A orthogonal
Data NInput_vars=3 NObservations=100
CMatrix Symm
1.
.6 .9
402 7
Matrices
A Full 33
B Diag 3 3
Covariances A*B*A*/
Specification A 123456789
Specification B 10 11 12
Start 1.0 A(1,1) A(2,2) A(3,3) B(1,1) to B(3,3)
Option LS
End

Here is the constraint A*A"=I
Constraint NInput_vars=3
Matrices

A Full 33 =A1

I ldentity 3 3
Constraint A*A*=I /
Option LS
End

Analysis of Correlation Matrices

As Lawley and Maxwell (1971 ch. 7) pointed out, it is incorrect to analyze correlation
matrices by maximum likelihood as if they were covariance matrices,. Incorrect analysis
leads to biased estimates of the confidenceintervals (even the likelihood-based confidence
intervals supplied by Mx). Likewise, the goodness-of-fit statistics can be biased, with
corresponding bias in the tests of hypotheses that use the likelihood ratio test. These
problems are limited to the analysis of correlation matrices using the maximum-likelihood
method and do not apply to asymptotic weighted least squares. The easiest way to avoid this
problem ! and one that we most strongly recommend ! is to fit models to covariance
matrices (or raw data) wherever possible.

If it is necessary to fit a model to an observed correlation matrix (perhaps because the
correlation matrix is the only available data, possibly published without variances or
standard deviations) then Mx can be used for correct analysis. The maximum-likelihood
fit function for covariance matrices assumes that the diagonal elements of the covariance
matrix arefreetovary. If they areall constrained to equal unity, then amodified fit function
isrequired. A simple way to implement this aternative fit function in MX is to add a
constraint group which forcesthe diagonal el ementsof the correlation matrix to equal unity,
but which does not contribute to the fit function. To illustrate the effects of correct vs.
incorrect analysis, we use the data of Lawley and Maxwell (1971). Ninetests of cognitive
ability were administered to seventh and eighth grade students by Holzinger and Swineford
(1939). The model has three-factors and is shown in Figure 6.4.
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File Contains Data for
PostScript Printers Only

Figure6.5 Three factor model of 9 cognitive ability tests (Lawley & Maxwell, 1971)

Lawley and Maxwell (1971) Analysis of correlation matrix
#Ngroups 2
#include lawley.dat
Begin Matrices;
A Full 93
E Diag 9 9 Free
R Stan 3 3 Free
End Matrices;
Label Row E
visperc cubes lozenges parcomp sencomp wrdmng addition cntdot stcurve
Label Col E
visperc cubes lozenges parcomp sencomp wrdmng addition cntdot stcurve
Label Row A
visperc cubes lozenges parcomp sencomp wrdmng addition cntdot stcurve
Label Col A Visual Verbal Speed
Specify A
1300
1400
1500

6
7
8

O O O o
O R R, K
o O O o

1
0020
22 0 21
Start .5 all
Intervals A4 2A52A62
Covariance A&R + E.E;
Options RSidual Multiple
End Group
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Constraint Group to make unit diagonal of predicted cov matrix in group 1
Constraint
Matrices = Group 1
B Unit 19 I Matrix of 1°s
End Matrices;
I use the \d2v function to extract the diagonal to a vector
Constraint B = \d2v (A&R + E.E") ;

Option df=-9 I Eliminate degrees of freedom credit for constraints
Option CI=90
End Group

The output with the constraints gives confidence intervals on the loadings from the verbal
factor to the verbal tests:

Matrix Element Int. Estimate Lower Upper Lfail Ufail
A1 4 2 9.0 0.9081 0.8284 0.9727 00 00O
A1 5 2 95.0 0.8674 0.7774 0.9310 00 0O
A1 6 2 9.0 0.8241 0.7240 0.8913 00 0O

To compare these results with the incorrect results that do not include the non-linear
constraint group, the second group was deleted, and NGroups was reduced to 1. This
incorrect analysis gives much larger confidence intervals on the parameters:

A1 4 2 9.0 0.9081 0.7334 1.1178 00 00O
A1 5 2 95.0 0.8674 0.6877 1.0816 00 00O
A1 6 2 95.0 0.8241 0.6402 1.0425 00 00O

Giventhat these confidenceinterval srepresent approximately 1.96 timesthe standard errors
reported by Lawley and Maxwell, both sets of results closely agree with theirs.

Fitting a PACE Model to Contingency Table Dataon MZ and DZ Twins

In order tofitamodel with additive genetic, common and specific environment components
to categorical datacollected from twins, we are faced with two possibilities. One, we could
use PRELIS or similar software to estimate tetrachoric or polychoric correlation matrices
and associate asymptotic weight matrices, or two, we could fit directly to the contingency
tables. Only thelatter approachissuitablefor model s of phenotypicinteraction betweenthe
twins. Phenotypic interaction leads to different variances between MZ and DZ groups, or
in the case of categorical data, to proportionate group differences in the thresholds. This
example uses a simple PACE model (see the example shown on page 120) fitted to 2x2
contingency tables obtained from MZ and DZ twin pairs. Thereis no information on the
total variance in these data; but there is information on the relative magnitude of the
variancein MZ and DZ groups (viathe thresholds). Therefore, it isnecessary to constrain
thetotal variance prior to interaction to unity. Thisisdoneinthefourth group. Thresholds
are constrained equal across groups.

#Ngroups 4
Categorical data analysis. PACE model
Calculation
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Beg
X

— - U N <

H
End

in Matrices;
Lower 1 1 Free
Lower 1 1 Free
Lower 1 1 Free
Full 2 2

Iden 2 2

Full 2 1

Full 11
Matrices;

genetic structure

common environmental structure
specific environmental structure
interaction parameters

Specification P 04 40

Boundary -.99 .99 4
Specification T 56

Mat
Sta
Beg

B=
End
End

rix H .5
rt .6 All
in Algebra;

= XX ;
= Y*y*
= 7*7°

(1-P)’;
Algebra;

G2: Monozygotic twin pairs

Data NlInput-vars=2

CTable 2 2

Fil
Mat
Thr

e=usmz.ctg
rices= Group 1
esholds T /

Covariances A+C+E | A+C _ A+C

End

G3: Dizygotic twin pairs

Data NlInput_vars=2

CTable 2 2

Fil

Matrices= Group 1

e=usdz.ctg

Thresholds T /
Covariances A+C+E | H@A+C _ H@A+C+] A+C+E ;

End

Constraint group to ensure a*a + c*c + e*e = 1

Data Constraint NInput=1

Matrices= Group 1

11
Beg
S=

End

Constraint 1 = S*S* ;

End

dentity 1 1
in Algebra;
(AICIE);
Algebra;

| A+C+E ;
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Twinsand Parents: Cultural and Genetic Transmission

Themodel described has been devel oped extensively inthe univariate and multivariate case
(Eaves et a., 1978; Fulker, 1982; Neadle & Fulker, 1984; Vogler, 1985; Fulker, 1988;
Phillips et al., 1988; Cardon, Fulker & Joreskog, 1991, Nede et a., 1994). In order to
preserve consistency with the ACE model presented for twin dataal one, the same separation
of environmental effectsis made here, following the last of the referenced papers instead
of the earlier treatments. A path diagram of the model is shown in Figure 6.6.

m
p P m
b
g r />r 1
ATl CT1 ET1 AT2 CT2
a c a c
I:)Tl |:>T2

Figure 6.6 Model of mixed genetic and cultural transmission for data collected from
twins and their parents. Phenotypes of a husband and wife (P, and P,,) directly affect the
shared environment of their children (C;, and C;,). Assortative mating, represented by a
copath (i) based on phenotypes generates covariance between the latent variables of the
parents. The additive genetic and shared and specific environmental effects (parameters
a, c and €) and the covariance of A and C (parameter s) are assumed to be equal across
generations. Genetic transmission from parents to offspring is fixed at one half.
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The development of acovariance structure model for thisdesignis not smple. We describe
two approaches: (i) direct use of RAM theory in which al variables in the model are
represented in two matrices, and the Pearson-Aitken selection formula (see page 111) is
used to handle assortative mating, and (ii) an computationally efficient approach that
progresses in a stepwise fashion from the top to the bottom of the diagram. Approach (ii)
isrecommended for general use except wherefast hardware gives approach (i) comfortably
quick turnaround.

RAM Theory Approach

Asdiscussed on page 108, structural equation modelsmay be specified very simply interms
of threematrices. Thefirst matrix, S, issymmetric and specifiesall the two-headed arrows
between al the variables (both latent and observed) inthe diagram. The second matrix, A,
is asymmetric and specifies al the single-headed arrows between all the variables in the
model. Causal paths from variable i to variable j are specified in element A;;. Thethird
matrix, F, isused to filter the observed variablesfrom the latent variables for the purpose
of model fitting. Thisexampleisarelatively inefficient approach to fitting this model, but
it illustrates the flexibility of Mx to implement theory-driven models explicitly.

! Rose social fears data
I Full 9-Phenotype model for all pedigree types
! P->C transmission & P--P assortment

#Ngroups 6
Gl - covariance in the absence of assortative mating

Calculation
Matrices

A Full 17 17

I Iden 17 17

S Symm 17 17
End Matrices;
Specification A

00000 12300 00000 00O
00000 00012 30000 00O
00000 00000 01230 00O
00000 00000 01203 00
00000 0OO0O0OO0 00200 13
00000 0O0O00O0O0 OOOOO OO
00000 0O0O00O00 OOOO0OO OO
00000 0O0O00O00 OOOO0OO OO
00000 0O0O00O00 OOOO0OO OO
00000 0O0O00O00 OOOO0OO OO
00000 0O0O00O00 OOOOO OO
00000 0O0O00O00 OOOOO OO
44000 00000 00000 00O
00000 0OO00O00 OOOOO OO
00000 0OO00O00 OOOOO OO
00000 0OO00O00 OOOOO OO
00000 0OO00O00 OOOOO OO
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Labels Row A
11 2 3 4 5 6 7 8 91011 1213 14 15 16 17
PH PW PMZ1 PMZ2 PDZ AH CH EH AW CW EW AMZ CE EMZ1 EMZ2 ADZ EDZ
Labels Col A PH PW PMZ1 PMZ2 PDZ AH CH EH AW CW EW AMZ CE EMZ1 EMZ2 ADZ EDZ
Value 0.5 A 126 A129 A 16 6 A 169
Specify S
0

O OO OO0 OoO oo
O OO OO0 O0oO oo
o
o

OO O OO OoOOoOo
O OO O oo Oo
O O O O oo
O O O o
o O O o
o
(00)
o
O OO oo

O O o wu
o O o

0

00

00000 5

0 00000 OO

Labels S PH PW PMZ1 PMZ2 PDZ AH CH EH AW CW EW AMZ CE EMZ1 EMZ2 ADZ EDZ
Labels S PH PW PMZ1 PMZ2 PDZ AH CH EH AW CW EW AMZ CE EMZ1 EMZ2 ADZ EDZ
Start 1.0S66S77588S599S1010S 11 11 S 14 14 S 151558 17 17
Begin Algebra;

O O O O oo
O O O O oo
O O OO OoOOoOOo
O O OO oo Oo
O O OO OoOOoOOo
O O OO oo Oo
O O OO OoOOoOOo
O OO O OoOOoOOo
O O OO oo

00

(@]
= =0 O O OO0 OO

0

20
o

R = (1-A) &S ;
End Algebra;
End

Group 2 - Calculations
Calculation

Begin Matrices;

X 1Zero 2 17

R Comp 17 17 =R1

Y Zlden 17 15

Z Zlden 15 17

I Iden 2 2

M Symm 2 2

End Matrices;
Specify M0 7 0
Start .1 M21
Begin Algebra;

A= X*R*X" ; I covariance matrix of parents

B= X*R*Y ; I covariance of parent phenotypes with other variables
C= Z*R*Z" ; I covar. of variables that are not parents® phenotypes
D= (At ] (A+M)*A™B _

((AHM)*A™*B) " |C-B"&(A™*(1-(A+M)*A7)); ! handle the effects of assortative mating
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End Algebra;
Options RSiduals
End

Group 3 - Constraints on kids" G-E variance and covariance
Constraint
Begin Matrices;
E Computed 17 17 = D2
C Stan 2 2
F Full 2 17
Constraint \vec(F&E)=\vec(C) /
Specify C 8
Matrix F
00000 00000 01000 00O
00000 00000 0O0O100 00O
Labels Row F PH PW PMZ1 PMZ2 PDZ AH CH EH AW CW EW AMZ CE EMZ1 EMZ2 ADZ EDZ
Options RSiduals
End

Group 4 - MZ twins & their parents
Data NInput vars=4 NObservations=144
CMatrix File=usfearmz.cov
Matrices

C Computed 17 17 = D2
F 1Zero 4 17
Covariances F*C*F"/
Options RSiduals
End

Group 5 - DZ twins & their parents
Data NInput_vars=4 NObservations=106
CMatrix File=usfeardz.cov
Matrices

C Computed 17 17 = D2
F Full 4 17
Covariances F*C*F"/
Matrix F
10000 00000 O0O0O0OO OO
01000 00000 00000 0O
00100 00000 00000 0O
00001 00000 00000 0O
Options RSiduals 1T=500
End

Group 5 - Summarize parameter estimates
Calculation
Matrices
P Full 18
Compute P/
Labels Col P A C E Q ResGs ResCt Mu S
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Specification P 1234567 8
Start .7 P11P13

Start .5 P15

Start 1 P16

Start .1 P14P18

End

Computationally Efficient Approach

It is possible to get much faster turnaround with computationally efficient approaches to
structural modeling of twins and their parents. In our second script the model for mixed
genetic and cultural transmission was specified in terms of the covariances as derived from
therulesof path analysis. Thisisthe*correlational model’ describedin Nealeet al. (1994)
but simplified with the algebrasyntax. In group 1 all the model parameters are declared in
separate matrices. In addition to the A, C and E matrices for additive genetic (A), shared
environmental (C) and unique environmental (E) factors, parameters for the residua
additive genetic variance (R,), the residual common environmental variance (R.) and the
genotype-environment covariance (s) are specified in matrices G, R and S. The genetic
transmission paths are fixed to .5 (matrix H). Separate cultural transmission paths are
estimated for the maternal (m) and the paternal (p) effectsin matricesM and F. The matrix
B controls the common environmental residual variance and reflects thus the shared
environmental effects of non-parental origin. Assortative mating is modeled as a copath
(Eerdewegh, 1982) in matrix D. Matrix P representsthe within person covariance. Finally
the model allows for non-additive paths (N), but they cannot be estimated simultaneously
with the cultural transmission paths in the twin-parent design. The matrices declaration
section is ended with the End Matrices; statement, and followed by starting values and
boundary constraintsfor the parameters. Expressionsfor the expected correl ations between
the relevant family members (spouses, father-child, mother-child, MZ twin and DZ twin)
are given in the multistatement algebra section, indicated by the Begin Algebra; End
Algebra; commands.

The model isnot identified without nonlinear constraints on certain parameters. These are
specified in groups 2to 5. The within person phenotypic variance is equated to the sum of
all genetic and environmental componentsin group 2. Group 3 equates the genetic variance
in children to that of the parents. Similar constraints on the genotype-environment
covariance and the environmental variance are calcul ated respectively in groups 4 and 5.

The observed data are supplied and the fit function is calculated in group 6 for MZ twins
and their parents and group 7 for DZ twins and their parents. The expected covariance of
these groups is a simple combination of the expected covariances for the respective
relationships, as calculated in group 1, using horizontal and vertical adhesion. The only
difference between the two groupsisthe expectation for the covariance between twin 1 and
twin 2.

Modifications to the Mx code are relatively simple to make. Additionally, facilities for
dropping parametersto fit reduced modelsor for adding different datasummaries makethis
example a convenient starting point for comprehensive analyses of data from all types of
nuclear family and twin and parent data.
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! Rose Fear data:

Social phobia

I Twins and parents: Genetic and cultural transmission model.
I P--P assortment

#Ngr

oups 7

G1: Model parameters

Cal

culation

Begin Matrices;

D

- T ZmMX0;vLo="T02X> T

B

Full nvar
Symm nvar
Low nvar
Low nvar
Full nvar
Full nvar
Symm nvar
Full nvar
Symm nvar
Low nvar
Low nvar
Full 11

Iden 1 1

Iden 1 1

End Matrices;

Mat

Start
Start
Start
Start
Start 1.
Start .7

Bou

rix H 0.5

1.
1.

owvluv oo
Toro T
[N N =N
[N N BN

nvar free
nvar free
nvar free
nvar free
nvar free
nvar free
nvar free
nvar free
nvar free
nvar free
nvar

assortative mating paths

within person covariance (Rp)

additive genetic paths

common environment paths

paternal cultural transmission
maternal cultural transmission
additive genetic covariance (Ra)

A-C covariance

common environment covariance (Rc)
specific environment paths

non-additive paths

! scalar, .5
I identity matrix
! common env residual variance

07E11

nd01D111

Begin Algebra;

W=
T
0
Q:
J=
U
V
End

P*D*P" ;

G*A" + S*C" ;
(P*F™+ W"™*M")*C"+ (1+ P*D")*T"*(HEA") ;
(PM™+ WXE™)*C*+ (1+ P*D)*T"*(HEA") ;

A*S*C™+ C*S"*A" ;

A&G+ C&R+ J + N*N* ;

H@A*(G+ HA(T&(D"+D)))*A"+ C&R+ J+ HOHAN*N* ;

Algebra;

Option Rsiduals

End

G2: Phenotypic Variance Constraint

Data Constraint NInput=1

Matrices= Group 1
Constraint P- (A&G+ C&R+ E*E"+ A*S*C"+ C*S"*A"+ N*N") /

End

Mother-Father Cov
Genotype-Phenotype Cov
Father-Child Cov
Mother-Child Cov

MZ Twin
DZ Twin
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G3: Genetic Constraint

Constraint

Matrices= Group 1

Constraint G= (H@(G+ HE@(T*(D*"+D)*T")+ 1)) /
End

G4: A-C Constraint

Constraint

Matrices= Group 1

Constraint S= (HOT*(M"+ F"+ D*P*M”+ D**P*F")) /
End

G5: Common Environment Constraint

Constraint

Matrices= Group 1

Constraint R= (M*P*M"+ F*P*F"+ M*W*F*+ F*W"*M"+ B) /
End

G6 - MZ Twins and parents
Data NInput=4 NObservations=144
Labels DAD_1 MOM_1 T1_1 T2 1
CMatrix File=usfearmz.cov
Matrices= Group 1

Covariance (P | W] O | P)_
(WiPlQlQ)_
(o1 Q I PJU)
corrQruppr) 7/

Option RSiduals

End

G7 - DZ twins and parents Rose Fear Factor 1
Data NInput=4 NObservations=106

Labels DAD_1 MOM_1 T1_1 T2 1

CMatrix File=usfeardz.cov

Matrices= Group 1

Covariance (P | W] O | P)_
(WiPlQlQ)_
o1 Q PV
corrQyveppr) 7/

Option Rsiduals Multiple

End

I Re-fit model with father-child and mother child cultural transmission set equal
Equate F111M111
End
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6.4 Fitting Modelsto Raw Data

When models are fitted to raw data, it is normal to provide a model for the means as well
as for the covariances. Otherwise, there is little difference in the approaches. Mx
computes minus twice the log-likelihood of the data, with an arbitrary constant that is a
function of thedata. Thusthere isno overall measure of fit, but there are relative measures

of fit, since differencesin fit function between submodels are distributed as +°.

Estimat

ing M eans and Covariances

This section demonstrates maximum likelihood estimation using complete, balanced raw
data. A Cholesky decomposition (see Figure 6.2) is used for the covariance structure, and
the means are estimated separately. Alternative models for covariances or means or both
could be used if desired.

ML example, calculation of likelihood for each observation.

E

ML fitting to raw data simulated

with SAS, whose PROC COR COV gave:

VARIABLE N MEAN

P1 1000 0.00182388
P2 1000 -0.98608262
P3 1000 2.05400385

COVARIANCE MATRIX

P1 P2
P1 0.970214 0.506058 0.620529
P2 0.506058 1.96235 0.807754
P3 0.620529 0.807754  3.2091

Cholesky for covariance structure

STANDARD

DEVIATION
0.98499439
1.40083917
1.79139557

Data NInput vars=3 NObservations=1000 NGroups=1

Rectangular File=mlped.raw
Begin Matrices;
M Full 1 3 Free
S Lower 3 3 Free
End Matrices;
Matrix_Start values S
1
.6 .8
.6 .0 .8
Means M /
Covariances S*S* /
nd
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The relevant part of the output from this job shows good agreement with the SAS resullts,
calculating means and covariances in the usual fashion, aswould be expected for asample
sizeof 1000. Theestimatesof the variancesare dight underestimates sincethe ML estimate
of avarianceisbiased, having denominator ninstead of n-1. Multiplying the ML estimates
by 1000/999 we recover the calculated covariances precisely.

ML EXAMPLE, CALCULATION OF LIKELIHOOD...
Matrix M
This is a FULL matrix of order 1 by 3
0.0018 -0.9861 2.0536
Matrix S
This is a constrained a FULL matrix of order 3 by 3
0.9692 0.5056 0.6199
0.5056 1.9604 0.8069
0.6199 0.8069 3.2059

Variable Pedigree Sizes

When there are many different possible configurations of data, it is most convenient to use
a variable length data file (see page 49). This information can be read by MXx and the
likelihood of the datamay be calculated for any structural model for the covariancesand the
means. In this example, a Cholesky decomposition (see Figure 6.2) of the expected
covariance matrix is specified in Group 1.

ML fitting to variable length data
Cholesky decomposition for the expected covariance matrix
Also matrix expression for means
- In this case just a simple vector with free parameters
Variable pedigree size ML example
Data NInput_vars=3 NObservations=1000 NGroups=1
VLength File=unbal.raw
Begin Matrices;
M Full 1 3 Free
S Lower 3 3 Free
End Matrices;
Start .7S11-S533
Means M /
Covariances S*S* /
End

Typical lines of the datafile unbal . raw look like this:
2

12 0.5550 -1.1114

3

123 1.6442 -0.1319 3.609508

3

123 -0.2145 -1.2193 5.011667

3

123 22274 -1.9423 0.714351
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There can be problems when beginning to fit models to VL data. One commonly
encountered difficulty isthat at the starting values, thelikelihood is effectively zero for one
or more pedigrees. Since Mx is going to try to take the logarithm of the likelihood, some
corrective action isrequired. During iteration a penalty function is used, but this doesn’t
help the case where there are poor starting values. To help guide the user to the problem
withthe starting values, M x printsout 3 columns of information: the observed and expected
means, and then the standardized difference between them. Now if these differences are
large (say more than 3 for any variable), it would be agood ideato change starting values
of either the means (to make the expected ones closer to the observed) or the variances (to
makethe standardized differenceless). If the starting values of the meansarevery bad, then
it would make sense to change them; however, if they are not, the error may occur with
another vector in the dataset, in which case modifying the starting values to increase the
expected variances should help. If not, examinethe expected covariance matrix; sometimes
large expected covariances can make particular pairings of scores rather unlikely. It is
usually better to supply starting values that specify adiagonal variance-covariance matrix,
since the overal likelihood is ssimply the product of the likelihoods of the individual
variables. If each of these likelihoods is reasonable, e.g. a standardized difference of less
than 2, thenthe overall likelihood will not produce problems unlessthe number of variables
in the vector islarge.

Definition Variables

For example: suppose that the variances of and covariance between two variables vary as
afunction of age. A traditional approach to this problem might involve splitting the sample
into two groups, young and old, and fitting a two-group model. Comparison of the fit
statistic obtained when the covariance is constrained to be equal in the two groups to that
obtained when each group hasits own covariance structure provides atest of heterogeneity.
But what if we want to use all the information on age, which is a continuous variable,
instead of an arbitrary cutoff for young vs. old?

We can use the observed age variable to define the covariance structure for that particular
observation. That is, we want to fit amodel of the form

y, " Lf%Xage

whereL and X are lower triangular matrices, f isavector of independent random variables
with mean zero and unit variables, and age is avector with age, as each element. Thusthe
covariance of y; will be

Cov(y,,y;) " LLU%XRX)

where R isadiagonal matrix with age as all elements. A script to fit this model is shown
below. Let variables1, 2 and 3 correspond to verbal |Q, quantitative 1Q, and age, whichwe
read fromfileiqg.vl. Mx usesthedefinition keyword to identify variablesthat are to be;
they are extracted from the dataset so modeling is restricted to the other variablesV and Q
(seefigure 6.7).
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Figure6.7 Definition variable example.

Title - verbal and performance 1Q covariance as a function of age

Data NInput=3 NGroups=1 I Single group example with 3 variables

Labels Verbal Quant Age

VL file=1Q.VL

Definition_variables Age / ! This variable is referenced as -1 in

! specification statements

Matrices

L Lower 2 2 Free ! Triangular matrix of paths from factor Fi to variable 0Oj
X Lower 2 2 Free ! Triangular matrix of paths from factor Ai to variable 0j
R Diag 2 2 I Matrix for variances of Ai latent variables

M Full 1 2 Free I Matrix for estimating means

Means M / ! Formula to compute mean vector

Covariance L*L" + X*R*X" / I Formula to compute covariances

Specify R -1 -1 ! Place definition variable on the diagonal elements of R
Matrix M 100 100 ! Starting values for means

Matrix L 15 0 15 ! Starting values for constant covariance component
Matrix X 3 0 3 I Starting values for age-dependent covariance component
Option RSiduals I Request some output

End
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Internally, Mx will recal cul ate the predicted covariance matrix for every observation™. The
usual raw data log-likelihood function is computed for every vector of observations, but
using the appropriate covariance matrix for this group. If we were to assign one and zero
to the age variable in accordance to our cutoff approach, we would get the same results as
the two-group heterogeneity method.

Apart fromthishandling of continuous heterogeneity, we should be awarethat considerably
more complex models may be attacked. All thetoolsof M x matrix functions and operators
may be used to define linear and non-linear functions of the definition variables and model
parameters.

Using NM odel to Assess Heter ogeneity

Mx has special features for assessing possible mixtures of distributions. Almost all
structural equation modelsmaketheimplicit assumption that onemodel describesthewhole
population. In readlity, the population may consist of several subpopulations. This type of
analysis requires the raw data to be analyzed, and thus assumes a multivariate hormal
distribution of each of the component subpopulations. Thelikelihood functionis modified
for this type of mixture. Let L, be the likelihood under model 1 and L, be the likelihood
under model 2. In both cases, this likelihood is computed with the multivariate normal
probability density function, as described on page 70. The overall likelihood is computed
asaweighted sum of thelikelihoods for each model, and the log-likelihood isthe logarithm
of this overall likelihood. MxX lets you enter any matrix formulafor the weights; here we
illustrate the method with a simple proportion.

Suppose that the population consists of a mixture of two groups, one with population
covariance matrix

O_'l
o8 1]

and the second with covariance matrix

(’)2 -

Using SAS, adata set of 500 pairs of scores for each of the two groups was simulated. In
addition, two further scores were added to the dataset: (i) a measure of group membership,
being N(0,1) for thefirst group, and N(1,1) on the second ! anormally distributed indicator
with a 1 standard deviation difference between the groups; and (ii) a key variable scored 0
for the first group and 1 for the second. The observed covariance matrices for the two
groups and the recovered estimates for a variety of models are shown in Table 6.1. First,
the results of fitting a model with no heterogeneity. The covariance is estimated at .47
which is approximately half way between .2 and .8 simulated for the two populations.

1N fact, it only does thisif the definition variables have different values from the preceding case, so
sorting may improve performance if the definition variables are quasi-continuous or ordinal.
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Second are the results of attempting to detect this heterogeneity with a simple model that
tries to estimate the proportions in the two samples. There is evidence of heterogeneity
here, because the fit function hasimproved compared to model 1. However, the parameter
estimates recovered are not good estimates of the population statistics, particularly for the
low correlation group, whose proportion is estimated at only .27 of the population. Better
estimates are recovered when the true population proportion is used (Fixed Heterogeneity
model). Therefore, without external indicators, it seems dangerous to draw conclusions
about the proportionsin the population, unless sample sizes are much larger than they are
here. TheFixed Indicator model usestheinformation fromtheindicator variableto partially
discriminate between the populations. A better fit is found, and good recovery of the
population parametersis obtained. To make this model realistic, the relationship between
the indicator and group membership should be estimated. Again, the parameter estimates
arelessredistic, particularly for theless correl ated subpopul ation, when the proportionsare
estimated rather than given.

In summary, it may be possibleto detect the presence of heterogeneity in araw dataset with
amoderately large sample size. However, unless one has a good indicator variable - and
knowsits relationship to the variables being analyzed - it is difficult to quantify theway in
which the ‘latent groups’ differ. One example where agood indicator variable is available
isgenetic linkage (Eaveset al ., 1996). Modeling heterogeneity with and without indicators
is in need of further study, both the complexity of the models used, and the sample
proportions.

Table 6.1 Summary of parameter estimates for avariety of models of heterogeneity

Model V1 C V2 p -2InL df
One model 1.0093 04699 0.8394 5344.12 1995
Estimated 05949 -0.1968 1.0359 0.2727 5289.39 1991
Heterogeneity 11779 0.7259  0.8840

Fixed 0.8409 0.1353 1.0065  .5000 5293.28 1992
Heterogeneity 11957 0.8113  0.8449

Fixed 09460 0.1721  0.9830 5267.59 1995
Indicator 1.0920 0.7764  0.8679

Estimated 0.6794  -0.1476 1.0017 5263.80 1988
Indicator 11672  0.7456  0.8922

Perfect 09997 0.1356  0.8473 5101.71 1992
Indicator 1.0393 0.8125 1.0036

Datawere simulated with unit variance and .8 correl ations for 500 cases, and unit variance
and .2 correlation for 500 cases.
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#Ngroups 1
No heterogeneity
Data NInput=4 Nobservations=0
Rectangular File=siml.both
Labels X Y Z Key
Select X Y /
Begin Matrices;
A Lower 2 2 free
M Full 1 2 free
End Matrices;
Start 1 A11toA22
Means M ;
Covariance A*A" ;
Option Mx%p=indivl.lik
End Group;

#Ngroups 1
Simple Heterogeneity - two models, no indicator
Data NInput=4 Nobservations=0 Nmodel=2
Rectangular File=siml.both
Labels X Y Z Key
Select X Y /
Begin Matrices;
A Lower 2 2 free
B Lower 2 2 free
I Unit 11
M Full 1 2 free
P Full 1 1 free ! proportion in subpopulation 1
End Matrices;
Start 1 A11toA22
Start 5B11toB22P11
Bound 001 .999 P 11
Begin Algebra;

Q=1-"P; I proportion in subpopulation 2
W= P_
Q ; I vector of weights
End Algebra;
Means M_M ;
Covariance A*A" B*B" ;
Weight W ;

Option Mx%p=indiv.lik ! put individual likelihood statistics to file
Option RSiduals Multiple
End Group;

I Fixed proportions heterogeneity

Drop @.5P 111
Exit

#Ngroups 1
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Estimated indicator

Data NInput=4 Nobservations=0 Nmodel=2
Rectangular File=siml.both

Labels X Y Z Key

Select XY 2/
Definition Z /
Begin Matrices;
Lower 2 2 free ! Cholesky of first subpopulation covariances
Lower 2 2 free ! Cholesky of second subpopulation covariances

A
B
|
M
C
J
K
L

N

Unit
Full
Full
Full
Full
Full
Full

L e N N
L e N L

1

free

free
free
free
1 free

End Matrices;
Specify C Z
Start 1 A11toA22L11N11
Start 5B11toB22J11
Start . 25K 11
Bound .1 3L11N11
Bound 0 3 K11
Bound -33J 11
Begin Algebra;

P = \pdfnor(C_J+K N) % ( \pdfnor(C_J L) + \pdfnor(C_J+K N) ) ; ! compute prob
Q=1-F;

W

P_Q;

End Algebra;
Means M_M ;
Covariance A*A" B*B" ;
Weight W ;
Option MxY%p=indiv.lik

Option RS

End Group;

#Ngroups 1
Fixed indicator
Data NInput=4 Nobservations=0 Nmodel=2
Rectangular File=siml.both

Labels X Y Z Key

Select X Y Z /
Definition Z /
Begin Matrices;

A Lower 2 2 free
B Lower 2 2 free

I Unit 11

M Full 1 2 free

CFull 11
ZZerol1

! Vector of estimated means

IMean of first group on Z variable
IDeviation of Mean of second group
IVariance of first group on Z variable
IVariance of second group on Z variable
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End Matrices;
Specify C Z ! put individual Z variable scores into matrix C
Start 1 A11toA22
Start 5B11toB22
Begin Algebra;
P = \pdfnor(C_I_I) % ( \pdfnor(C_z 1) + \pdfnor(C_IL_I) ) ;
I P computes probability separately for every case in the sample
Q=1-P;
W P

Q;
End Algebra;
Means M_M ;
Covariance A*A" B*B" ;
Weight W ;
Option MxY%p=indiv.lik
Option RS
End Group;

#Ngroups 1
Two groups, perfect indicator (Key)
Data NInput=4 Nobservations=0 Nmodel=2
Rectangular File=siml.both
Labels X Y Z Key
Select X Y Key /
Definition Key /
Begin Matrices;
A Lower 2 2 free
B Lower 2 2 free
FFRull 11
I Unit 11
M Full 1 2 free
CFull 11
ZZerol1l
End Matrices;
Specify C Key
Matrix F 5
Start 1 A11toA22
Start 5B11toB22
Begin Algebra;
P=C; ! compute prob
=1 -P;
P

Q;
End Algebra;
Means M_M ;
Covariance A*A" B*B" ;
Weight W ;
Option Mx%p=indiv.lik
Option RS
End Group;

= O
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Using #f and #repeat Commands

When genotype data are available on siblings or twins, one can test the contribution of a
specificlocus(in additionto unmeasured residual genetic effects) tothevariability of atrait.
In most cases, alarge number of markers are typed, which would require repeated running
of the same script with the only change being the name of the rectangular data file being
read in, corresponding to the different markers. The #repeat command allows the user to
run the script for the different markersin onejob.

The example below shows a script which is being repeated 25 times, with each run reading
adifferent rectangular datafile. Thefilenameis created with a#define’ d string variable at
the end of the filename which changes according to the repeat_number. The#if command
is used so that for the first nine repeats, the $repeat_number follows 3 zero’'s. For the
remaining repeats (seethe#elseif command) the $repeat_number follows?2 zero’ sto match
thefiles (mx0001-mx0025) containing the genotype datafor the 25 different locations. The
full model estimates the contribution of the QTL effect in addition to residual genetic and
specific environmental effects. The submodel tests the significance of the QTL effect.
When the 25 repeats are done, a System command is invoked to save the relevant output -
the location number and the likelihood ratio chi-square - in a separate file using the ‘ grep’
and ‘paste’ commands under Unix. If ‘grep’ and other Unix like utilitiesareinstalled under
Windows, the job could be run on that platform as well.

I Univariate QTL analysis using raw data and weighted IBD probabilities
#define nvar 1

#repeat 25

#Ngroups 1

G1: QTL model with heterogeneity and weights
Data NInput=27 NModel=1
Missing=-1.000000
#if repeat_number < 10
Rectangular File=mx000$repeat_number
#elseif repeat_number < 100
Rectangular File=mx00$repeat_number
#else
Rectangular File=mx0$repeat_number
#endif
Labels
Locn Pair pibd0 pibdl pibd2
ppnl TOTCH1 LOGTR1 LDL1 APOB1 LOGLPA1l BMI1 HDL1 APOA11 APOA21 APOE1
ppn2 TOTCH2 LOGTR2 LDL2 APOB2 LOGLPA2 BMI2 HDL2 APOA12 APOA22 APOE2
Select pibd0 pibdl pibd2 LDL1 LDL2 ;
Definition pibd0 pibdl pibd2 ;
Begin Matrices;
A Lower nvar nvar Free I residual genetic effect
E Lower nvar nvar Free I specific environmental effect
K Full 31 I weights
F Full 1 3 Fixed I coefficients 0,0.5,1
Q Full nvar 1 Free ! QTL effect
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HFull 11 I scalar 0.5
M Full 1 nvar Free I means
LFull 11 I matrix for the location (repeat_number)

End Matrices;
Matrix F 0.0 0.5 1.0
Matrix H .5
Specify K pibd0 pibdl pibd2
Begin Algebra;
P = F*K;
HEA*A" ;
A*A" +Q*Q" +E*E";
U + PEQ*Q";
VIW_
WJV;
End Algebra;
Means M |M ;
Covariance Y ;
Matrix A .5
Matrix E .5
Matrix Q .5
Matrix M 4.9
Matrix L $repeat_number
Options RSiduals NDecimals=2 Iterations=5000
Options Multiple Issat
End

weighted IBD probabilities
residual genetic variance
total variance

total genetic covariance

U
v
W
Y

I Fit submodel dropping the QTL effect

Drop Q111

Exit

#end repeat

system grep “Difference Chi’ qtl.mxo > diff
system grep “Matrix L  “ qtl.mxo > location
system paste location diff > results.txt

6.5 User-Defined Fit Functions

Least Squares

This is a simple example to illustrate the use of a user-defined fit function, in this case
least-squares. The model statement eval uatesto ascalar which isminimized by MX. Note
that this approach is generally less efficient than using built-in formulae available in Mx,
but it is much more flexible.

User defined function to fit to a correlation matrix by least squares
Data NInput vars=3 NGroupies=1
CMatrix Symm

1

.21

3.41
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Begin Matrices;

A Symm 3 3 = %01

B Stan 3 3 Free
End Matrices;

Begin Algebra;

D= \vec(A)-\vec(B);
End Algebra;

Compute \sum(D.D);
Option User
End

Correction for Ascertainment

On page 92, we described how proband-ascertained ordinal data could be used to estimate
population covariancesor genetically informative parameters. Thissametruncate selection
might be applied using a screening instrument, so that only individuals above a certain
threshold value are sampled. If such an ascertainment scheme was applied in a pairwise
fashion, such that only pairs in which at least one of the pair was above threshold, the
likelihood of these observations would require correction for the necessarily missing pairs
concordant for being below threshold. Mathematically, thelikelihood of pair ascertainment
can be expressed as a double integral of the bivariate normal distribution:

- t t..
Lx s mMo(vl,vz)dvzdvl
wheret isthe ascertainment threshold, v, and v, are the liability values of individuals 1 and

2, and ¢ is the multinormal probability density function. The likelihood of a pair of
observations x;, and X, given the ascertainment scheme is therefore:

. 0 (X,,X)
L(X,. %,|A) —
1! uaal (vp,v,) dv, dv,

If weusetwicethe negativelog-likelihood as afunction to minimize, then the ascertainment
correction becomes more clearly distinct:

12InL(x,%,JA) * !Z(In(b(xl,xz) ! In(l!m!:m!:('j(vl,vz)dvzdvl))
" 12In(8(x.x)) % 2|n(1!m!:m!:d(vl,vz)dvzdvl)

when we have m pairs, the likelihoods are summed over j=1... m, giving

- .. tot..
!2In(o(xj,x2j)) % 2m|n(1!m!4m!4o(v1,v2)dv2dv1)

Thefirst term isthe function value cal culated by Mx when fitting to raw data. The second



Example Scripts 149

termmay be cal culated by obtaining the value of theintegral from adummy categorical data
group using zero observed frequenciesin each cell. Parameter t, the threshold in this group
should be fixed at the population value, and the correlation should be constrained to equal
the correlation of these two variables as estimated from the ascertained data. The expected
proportions under the bivariate normal distribution are passed as a matrix using the %P
constraint as described on page 59.

Simulated twin data. Raw ML estimation
Data NInput=2 NGroups=3 NObservations=1000
Raw_data file=[neale.sas]mzasc.dat
Begin Matrices;

M Full 12
R Stan 2 2 Free
End Matrices;
Mean M /
Covariance R /
Matrix M 0 O
Bound -.99 .99 R 1 2
Option RSiduals
End

Dummy group to calculate expected cell proportions
Data NlInput=2
CTable 2 2
00
00 ! It"s full of zeros so it contributes zero to the function
Begin Matrices;
TFull 21
R Stan 2 2 = R1
End Matrices;
Matrix T 1.282 1.282
Thresholds T /
Covariance R /
Option RSiduals
End

Calculate ascertainment correction
Data NInput=0
Begin Matrices;
I Iden 11
J 1Zero 1 2
P Full 2 2 = %P2
TFull 11
End Matrices;
Matrix T 2000 I twice the sample size of group 1
Compute T*\In(1-J*P*J") /
Options User-defined RSiduals Multiple
End
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6.6 Using Mx Header and Template Files
Factor Modelsfor Twin Data

To simplify fitting models using the Mx script language, a combination of header and
template files can be used, possibly with existing dat files. The dat file contains the basics
about the actual data, such as number of variables, observations, labels and the data
themselves, either raw or summarized. The header file includes al the elements of the
model that can be changed in #define’ d variables, e.g. the dat file and the variables to be
analyzed. Thelast line of the header file calls the template file which remains unchanged.
Thetemplatefile includes ageneric script - in this example for orthogonal factor analysis -
which isfitted to the input defined in the header file.

The dat file in this example contains the covariance matrix for 5 intelligence measures
obtained on 100 subjects.

I

I Factor.dat - example factor analysis data
1
Data NInputvars=5 NObservations=100

Labels verb perf matrix digit speed

CMatrix

1.2
1.4

1.5

2.0

.3
.4 .3
.2 4521

w TN -

The example header file defines the dat file ($DATA), the number of factors (nfac), the
number of variables (nvar), the difference between the number of factors and variables
(diff), and a list of labels of the variables to be analyzed ($vars) which can be easily
changed tofit to different dataor adifferent number of variables or factors. Thisheader file
can be edited by the end user using the MxGui (MxProject_Header Edit).

Orthogonal factor analysis example

!
!
!
I Model is of the form F*F" + E*E

I where F contains the factor loadings and is lower triangular but not square
I Factors are constrained to be orthogonal

I E is diagonal and contains error s.d."s

1

#define $DATA factor.dat ! dat file containing Data line, labels and data

I or data files to be read. Use MxProject menu - data file edit to create

#define nfac 2 ! number of factors

#define nvar 5 ! number of observed variables - must match number
I of labels above

#define diff 3 I set equal to nvar-nfac

#define $vars verb perf matrix digit speed ! list of labels of variables

I to be analyzed
!
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I The template file is included below
#include factor.mxt
! End of factor.mxh header file

The template file fits an orthogonal factor analysis with nvar variables (in this example 5)
and nfac factors (in this example 2) to the intelligence data as defined in the header file.
There is no need to edit thistemplate file.
1
I Template file factor.mxt
1
#NGroups 1
Title Generic orthogonal factor analysis script

I include data file

#include $DATA

Select $vars

I set up matrices

Begin Matrices;

G Lower nfac nfac free ! top part of loading matrix

H Full diff nfac Free

E Diag nvar nvar Free

End Matrices;

Begin Algebra;

F=GH;

End Algebra;

Covariance F*F* + E.E ;
End

Alternative Genetic Modéelsfor Twin Data

The Mx Gui has an editor for header files which allows the beginning user to fit different
models to different data, simply by changing the relevant lines of the header file. In the
example below, changes can be made to the number of variables to be anayzed, the
particular variables for analysis, the data files, the model, the starting values, and whether
confidence intervals are requested and means are estimated. Choicesare saved in define'd
variables which are used in the script which is read from atemplate file using the#include
command. Thetemplate file then fillsin the choices for the define’ d variables and uses a
variety of #if commandsto fit the requested model with or without means and confidence
intervals. Note that new #if commands can be nested within other #if commands. Thisis
done to request the correct confidence intervals depending on the model being fitted.

Example Header File:

Header file for ACE/ADE/AE/CE/E Cholesky model
Two groups: MZ and DZ twins

Data files required are DATAMZ and DATADZ
Twin variables are expected to be labeled -T1 and -T2

!
!
!
!
!
!
I E.g. height-tl height-t2 bmi-tl bmi-t2
1
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#define nvar 1 !
#define $vars BMI-T1 BMI-T2 !
#define $DATAMZ ozbmiomz.dat !
#define $DATADZ ozbmiodz.dat !
#define $model AE !
#define intervals 1 !
#define means 1 !
#define $startsd .6 !
#define $startmean 2 !
I The template file below should
#include ace-cholesky.mxt

I End of ACE-cholesky header file

Example Templatefile:
1 A/C/E/D Cholesky model

#NGroups 1
G1l: Model parameters
Calculation
Begin Matrices;
#if $model = ACE
X Lower nvar nvar Free
Y Lower nvar nvar Free
Z Lower nvar nvar Free
W Lower nvar nvar
#elseif $model = ADE
X Lower nvar nvar Free
Y Lower nvar nvar
Z Lower nvar nvar Free
W Lower nvar nvar Free
#elseif $model = AE
X Lower nvar nvar Free
Y Lower nvar nvar
Z Lower nvar nvar Free
W Lower nvar nvar
#elseif $model = CE
X Lower nvar nvar
Y Lower nvar nvar Free
Z Lower nvar nvar Free
W Lower nvar nvar
#elseif $model = E
X Lower nvar nvar
Y Lower nvar nvar
Z Lower nvar nvar Free
W Lower nvar nvar
#else ! good programming practice

number of variables being analyzed

labels for variables

name of MZ dat file

name of DZ dat file

model type: ACE; ADE; AE; CE; or E
confidence intervals: 0 = No; or 1 = Yes
means: 0 = No; or 1 = Yes

sd/3 for ACE/ADE sd/2 for AE/CE and sd for E
vector of observed means (nvar of them)

not be changed

is to check for strange input

! and note it when it occurs

Oops - error, not correct heade
#endif
#if means = 1

r file model variable
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M Full 1 nvar Free
#else
I Vector of means not required
#endif

HFull 11

Q Full 11

End Matrices;

Matrix H .5

Matrix Q .25

Start $startsd All
#if means = 1

Matrix M $startmean
#else
#endif

Begin Algebra;

A= X*X";

C= Y*Y*;

E= Z*Z";

D= W*W*;

End Algebra:
End

Group 2: MZ twins
#include $DATAMZ
Select $vars ;
Begin Matrices= Group 1;
Covariances A+C+D+E | A+C+D _
A+C+D | A+C+D+E ;
#if means = 1
Means M|M;
#endif
Options RSiduals
End

Group 3: DZ twins
#include $DATADZ
Select $vars ;
Begin Matrices= Group 1;
Covariances A+C+D+E | H@A+C+Q@D _
H@A+C+Q@D | A+C+D+E ;
#if means = 1
Means M|M;
#endif
#if intervals = 1
#if model = ACE
Intervals A111-Alnvarnvar C111-C 1 nvar nvar
Intervals E1 11 - E 1 nvar nvar
#else if model = ADE
Intervals A111-Alnvarnvar D1 11-D 1 nvar nvar
Intervals E1 11 - E 1 nvar nvar
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#else if model = AE
Intervals A111-Alnvarnvar E111-E 1 nvar nvar
#else if model = CE
Intervals C111-C1lnvarnvar E111-E 1 nvar nvar
#else if model = E
Intervals E1 11 - E 1 nvar nvar
#else
#endif
#else
#endif

Options RSiduals
End
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Appendix A Using Mx under different operating systems

A.1 Obtaining MX

Currently the Mx statistical engineis available for several Unix systems including Linux,
Solaris, Irix, IBM AlX, Digital Unix, HP Ux). Versionsfor most operating systems can be
downloaded via the internet at http://views.vcu.edu/mx. The MXx Graphical Interface
(MxGui) is available for MS Windows and MS-DOS and may be obtained from
http://www.vipbg.vcu.edu/mxgui. It can use either the included DOS version or Unix
version to analyze data.

A.2 System Requirements

A.3

A4

To run the Mx graphical interface, you need:

An IBM-compatible PC running Windows 3.x or 95 or NT

A 386-DX (or 386-SX with coprocessor) or above (486-DX, Pentium, etc.)
A mouse or similar pointing device

At least 6Mb of free diskspace

At least 16Mb of installed RAM

HHHHH

To use networked Unix workstationsto run the M x statistical engine (for faster turnaround
of cpu intensive jobs) a TCP/IP connection is needed.

Installing the Mx GUI

Windows 95/98/NT

Download mxgui95.zip and unzip it into adirectory such asc: \templ (alternatively you can
use WinZip http://www.winzip.comto unzip and install inasingle step). Run the program
setup.exe by double-clicking on it in the Windows Explorer and follow the instructions for
the installation. Choose an installation directory that is different from the directory
containing the setup.exe program.

Windows 3.xx

Download thefile mxgui31.zip and unzip it into adirectory such asc:\templ (aternatively
you can use WinZip http://ww._winzip.com to unzip and install in asingle step). Run the
setup.exe file by double clicking on it in the File Manager and follow the instructions for
the instalation. Choose an instalation directory that is different from the directory
containing the setup.exe program; we recommend the default C:\mxgui.

Using Mx

Windows

See Chapter 2.
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Dos

Mx iswritten in about 30,000 lines of FORTRAN, and it links to afurther 20,000 lines of
NPSOL code for optimization, so the resultant .exe file does not run within the 640K limit.
Fortunately, the Lahey compiler allows binding of aloader to the code which permits Mx
to use memory beyond the 640K limit in 386 and 486 machines. If the program runs out of
memory, it will use virtual memory (disk space) instead, but obviously this can drastically
decrease performance. The use of Stacker (file compression software) also seemsto slow
things down, especialy for thefirst runinamultiplefit file. Under DOS, performance can
be improved if SMARTMEM is loaded.

Note the difference between your computer running out of memory and M X running out of
workspace. Currently, the PC version is configured with 100,000 double precision words
of workspace; larger workspace can be requested on the command line with e.g.

mx -k 500

which would request 500,000 words of workspace.

We recommend that input files have the naming convention cutename .mx where cutename

isaname of your choice. To run Mx on aPC, create an input script and type

mx cutename.mx {cutename.mxo}

if you arerunning DOS. Mx now no longer requiresthat the output files be specified on the
command line. With the syntax

mx cutename.mx

the output will bein afile called cutename.mxo

If you wish to use other extensions or names for input and output files, you could, for
example, create afile called badname..abc, and use the syntax:

mx badname.abc awfulname.xyz

which would create an output file called awfulname.mxo. The command

mx badname.abc

would generate an output file called badname .mxo

UnderWindows 3.x, 95 and NT, it ishandy to use the Associate option in the File Manager,
to associate .mx fileswith themx.exe programfile. Double-clicking a .mx file will then run
Mx and produce a .mxo output file. Feedback of function evaluations is printed on the
screen. Alternatively theinput file can belaunched ontheMXx icon. Similarly the .mxo files
can be associated with your favorite text editor/viewer, so that output files are easily read
with a double click.

We can extend the idea of filename extensions a little further to include: covariance
matrices, .COV; correlation matrices, . COR; contingency tables, .CTG; matrices, .MAT; variable
length files, .VL; rectangular files, .REC; weight matrices, .ASY; inverted weight matrices,
.ASI; vectors of means, .MEA; mx savefiles, .MXS. Of course, it doesn't make any difference
to the program what you call thefiles, but some widely-used conventions such asthese help
you and other usersto understand the content of thedirectory when you (or your colleagues)
look at it six months | ater.
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Hypertext output may be requested with the -h flag, e.g.
mx -h myfile.mx myfile.htm
would produce html output suitable for looking at with a browser like Netscape.
UNIX
Mx may be used very simply in UNIX by typing
mx <inputfile >outputfile
and the parameter & may be added to run jobsin batch. For very cpuintensive applications
the command
nice mx <inputfile >outputfile
may be used to run the job at lower priority to avoid overtaxing the system.
Y ou can also use abmx script which allows you to use the following syntax:
bmx inputfile
The outputfile is then automatically created as inputfile.mxo; the bmx script may be
downloaded, but it is quite short:
(usr/local/bin/mx <$1.mx >$1.mxo; \
echo “Mx has just finished a job for you ~G”; \
echo “See output in $1.mxo0™)
and should be entered as a single line, with the literal character ctrl-G (ASCII code 7) to
make a beep.
VAX VMS

TheVMSversionisnolonger supported; however, version #isstill available at thewebsite.
Mx for VM S isdistributed with a command file (MX.COM) which deals with file extensions
and checks to see whether the user has sufficient memory resources. Typically one user at
asite, the administrator, will keep the command and executable fileswith read and execute
permission set for al users. Then if users define the symbol mx with a command such as
$ MX == "@DISK1:[BOSS.MX]JMX.COM DUMMY"

where DISK1 is the name of the diskdrive, BOSS is the name of the administrator, and
BOSS.M X isthe name of the subdirectory in which the mx.com and mx.exefilesare stored.
The above symbol definition will permit usersto run Mx either interactively or as abatch
job. The only differenceisthat the former will produce a mesmerizing display of the Mx
logo and the latter will free up your terminal to do something else whileit runs. The output
file may be read while the program is running, though emptying the print buffer has been
reduced to improve performance.

Mx can be run either interactively with the following syntax:

$ MX CUTENAME

or alternatively, you can run the job in batch with

$ BAT/Q=whateveryoulike MX CUTENAME

for short jobs, ignore the /Q= bit. With this syntax, the output will be called CUTENAME . MXO.
Thereisalso afacility , caled imx, for editing jobs, running them, and viewing the output.
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Appendix B Error Messages

B.1 General Input Reading

If, whilelooking for anumber, a(non-comment) input linewith only non-numeric characters
onit (e.g. matrix P) isfound, the program issues awarning:
**WARNING** Non-numeric characters found when trying to read a number

Thisisto aert the user to what is probably an error of not reading enough numbers, for one
of these reasons:

C inputlinesaretoo long (1200 column maximum, except AlX (500))

C thematrix was given the wrong dimensions in the matrices command

C too few numbers have been supplied

Thisisnot afata error, but normally some other problem will arise. Similarly, if too many
numbers have been provided for a matrix, (or a mistake was been made when defining the
type or dimensions of the matrix) the program will usualy try to read a number as a
keyword, ask something like“ Just what is this keyword supposed to mean?” and stop.

Sometimes an integer overflow will occur if too many digits have been read in free format
for a number. Try to keep the number of digitsto 9 or less. If you really need more
precision, use the exponential format (D+00) or read data from afile.

B.2 Error Codes

Thisisalist of the error codes reported by Mx. The error messages are supposed to be
self-explanatory, but they are usually quite brief. Heretheitalictext isthe error, and ordinary
type gives alittle further explanation.

1 First input line after title must be DATA. Will occur if the Title line has been forgotten. Maybe, just

MAY BE, you got your NG wrong.

Data line must have NI and NO specified. (Data groups only).

End of file while trying to read title.

Must specify Matrices at this point... Perhaps you have the wrong NI or the wrong matrix type - SY

instead of FU?

Not alegal matrix name. Use A-Z, one |etter only.

Illegal matrix type... Check for typos. You may use ZE, ID, 1Z, ZI, DI, SD, SY, ST, FU, UN or LO.

Sorry, | seemto be at the end of your input file. Check NG is correct.

Number of selected variables must be less than or equal to number of input variables NI ... Otherwise

you won't be analyzing something sensible and positive definite.

9. Error - no variables selected for analysis.

10.  Terribly sorry, | don't have enough workspace.

11. Please try not to refer to matrices that you haven't specified.

12. Please use only Pattern or Specification throughout. Pattern and Specification cannot be used in the
sameinput file.

13. Error - no matrix specified...

14. More than 3 dimensions specified. After a matrix name, there should be a maximum of 3 numbers to
identify the element.

15. Error - matrix has not been specified.

16. Matrix has been specified not to have free elements. See Table ?to figure out which types of matrix can
have free elements.

~wn

N O
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17.
18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.
29.

30.
31

32.
33.
34.

35.

36.
37.
38.

39.

40.
41.

42.

45.
46.
47.
48.

You cannot alter off-diagonal elements of a diagonal matrix.

Incorrect element of a Subdiagonal matrix specified. Y ou can't alter elements on or above the diagonal
of as Subdiagona matrix.

Incorrect element of a Sandardized matrix specified. You can't ater elements on the diagonal of a
Standardized matrix.

Pleaseuse2 or 3dimensional format for elements. Array referencesshould be group,row,col, with group
optional.

Sorry, | can't find your matrix element. | really should tidy up sometime.

I'msorry, | don't understand this part of DATA line, so I'mignoring it. Notethat Mx isnot LISREL and
won't fiddle about changing data structures using the MA= command syntax. You can aways do it
explicitly in alittle Mx job which will be good for your immortal soul.

Sorry, | couldn't invert your expected matrix. If the method is ML, the expected matrix has to be
invertible throughout optimization. Mx will try to avoid non-positive definite areas with a penalty
function.

Sorry, | couldn't invert your asymptotic matrix. If the asymptotic matrix is not positive definite, it must
be fixed. Check the Select command for repetitions of anumber, if it is used.

Strangely, you seem to have requested an unknown matrix operation. IF you get this one, memory is
screwed up somehow, and you should check your input file carefully before sending the problemto Mike
Nedle.

Sorry, your model matrix has different dimensions from your data matrix. A common silly mistake.
Carefully figure out the dimension of your model, check NI parameter and Select command if used.
Sorry, your expected matrixisnot symmetric. The matrix formulayou provide should yield amatrix that
issymmetric, if it isto be fitted to data.

**3orry, you must have symmetric or full model** Same as previous message.

Pleasetry not to specify inverse for non-square matrices. Generalized inversesare not available. If you
are desperate, try transforming to a partitioned matrix that has a square matrix of full rank at one end.
Sorry, had trouble transposing a matrix. Thisisan unlikely error.

Sorry, | couldn't find the determinant of a matrix. | thought | put it on the shelf here somewhere...
Probably zero.

Uh-oh.. there's a problem with a binary operator. This can happen when evaluating an illegal matrix
expression, but it isunlikely.

Sorry, the matrix addition screwed up. Very unlikely.

The matrices you wish to add are not conformable for addition i.e. the number of rows (columns) in
matrix 1 is not the same as the number of rows (columns) in matrix 2. Quitelikely. If at first you don't
succeed, check check and check again.

The matrices you wish to multiply are not conformable for multiplication i.e. the number of columnsin
matrix 1 is not the same as the number of rowsin matrix 2. Be surethat you are using the right type of
multiplication for your application, as well as checking the dimensions of the matrices you wish to
multiply.

You seem to have an unknown matrix type. Very unlikely.

| seem to be using an unknown fit function. Very unlikely.

You must specify 3 numbersfor boundary constraints. Lower bound, Upper bound, Parameter # or array
element.

First character after BOUNDARY must be alphanumeric.  Alphanumeric means alphabetic
abcdefghijklmnopgrstuv or 01234356789.

Sorry, to request AWLSfor this group, you should have input an asymptotic covariance matrix.

| don't know to what you want me to equate this matrix. Some error in the =Mi command to equate
matrices. Equatee must be on the same input line.

Sorry, | can't make this matrix equal to a matrix that you haven't supplied yet. Reorder your groups if
itisn't atypo.

Uh-oh... | got stuck inverting a matrix while calculating expected matrix... If you are using an (I-B)~
formulation, make sure that the parametersin B do NOT havebounds+1 or -1. Thiserrorisapainin
the neck. If you get it alot, et me know. Thiscan be awkward. Sometimes starting values or changing
the boundaries on parameters can help.

Uh-oh... I'm having trouble reading a number in D or E format. Probably atypo in the data.

Sorry - could you put the =filename on the same line as the FI, please?

Awfully sorry, | couldn't open afile for you. Probably a spelling mistake in the filename.

| deeply regret that your equality constraint refers to a non-existent matrix.

OH NQ! ThelOP parameter calling MSOFARiswrong. | have no ideawhat thiserror means. Thegood
thing about it isthat you are not likely to get it.
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49.
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64.
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66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

Please don't mix the numeric and array referenceson a Bound line! Useonly parameter numbersor only
matrix elements. | just get so terribly confused.

Therel was, looking for a number and - blow me down... - | just could not find it. Probably an error in
specifying the dimensions of amatrix. The end of file was found before the number.

It seems rather strange to me to have a + or - sign without a number after it. Well, wouldn't it seem
strange to you?

You seemed to put a * in the middle of two numbers but WRONGLY. Do not pass GO, do not collect
$200.

Uh-oh. Now there are too many numbersin alist.

Nincompoop. Your data matrix hasto be positive definitefor GLS. Probably alittle harsh, thismessage.
Ouch! do not try to change your mind about the number of groups NG... This used to cause big
headaches.

Awfully sorry, old chap, you'retrying to | between matrices that have a different number of rows. No
can do! Check conformability.

Awfully sorry, old chap, you're trying to _ between matrices that have a different number of columns.
No way! Check conformability.

Uh-oh! Your formulahasanillegal character. Edityour input fileand arrest thischaracter immediately.
Onthe IBM RISC 6000 it can occur spuriously and irrationaly if you leave blank spaces at the start of
aline following an underscore. Heaven knows why.

Uh-oh! Your matrix expression has a mistakeinit. Pleasefixit. This could be unmatched parentheses,
amissing operator or a missing matrix. Sorry that it isn't more specific... Also, the matrix formulais
sensitiveto un-trapped memory problems. Oneknown possibility isthat you havetried to do something
to arange of matrices from different groups, e.g. Stat 1A 111-A 433.

There seems to a problem with your format in your data file. Put the format in parentheses () or use *
to read datain free format.

Oh dear! The model you specified does not give the same number of rows in the Expected Matrix as
there arein the Observed Matrix for thisgroup. Check the order of the model.

Sack has overflowed - kick Mike Neale. This is not necessary to fix the job. Your complicated
expression ought to be simplified by using a CALC group to precalculate part of it.

The matricesyou wish to subtract are not conformablefor subtraction. i.e. the number of rows (columns)
in matrix 1 is not the same as the number of rows (columns) in matrix 2. If this message doesn't add up
to you, go back to elementary school.

I'mterribly sorry, stack 1 has overflowed. Please abuse Mike Neale. Simplify your expression with

CALC groups.
I'mterribly sorry, stack 2 has overflowed. Please abuse Mike Neale. Simplify your expression with
CALC groups.

An undefined matrix has been encountered in the matrix formula. Look for typosin theformula, andin
the matrices command. You're using amatrix that hasn't been specified for this group.

You seemto have missed out an operator... Matrix names should besinglelettersonly. Check the matrix
formula for matrix names that are more than one letter.

At first you put % but then there was neither O nor E nor R after it. Pleasetry not to make grammatical
errorslikethis. So put O or E or R after it!

You seemto bereferring to parameter specifications for an Observed or Expected matrix... Thereisno
way that you are going to be allowed to do this.

I want you to get this right. If you equate to the Observed or Expected matrix, you must specify a
symmetric or full matrix. Get it right.

The matrix you are trying to equate to the O matrix is bigger than the Observed matrix following any
selection. Makeit smaller...

Thematrix you aretrying to equate to the expected matrix is not the same size as the expected matrix for
that group. Thesize of the expected matrix for that group isdetermined by the size of its observed matrix
after selection. Makeit the same size.

You haveto give NG after CA if thefirst groupisa CALC group. So doit.

Tut-tut! you aretrying to dot-product two matricesthat have different dimensions. Thisisdifferent from
ordinary matrix multiplication after all.

| tried to read another group and hit the end of file instead. Either NG= iswrong in group 1, or your
input file has been truncated. NG is probably wrong.

Look buster, if you want to define your own function. Then please get your matrix formula to define a
1x1 matrix! See page92
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At first | thought you were going to use a function, but then... You didn’t put \det, \tr, \exp, \In, \sqrt,
\v2d, \d2v, \m2v, \v2s, \v2f, \eval, \evec, \ivec, \ival, \stnd, \vech, \vec, \sin\cos\tan\sinh \cosh \tanh \muln
- or any functionsthat | recognize, so | am confused.. You must have boobed somewhere.

Sorry, | only calculate the determinant of SQUARE matrices.

Sorry, | only calculate the trace of SQUARE matrices.

| say, if you use the \EXPonent operator, you must make sure that the exponent is a 1x1 matrix. You
won't get this error message.

| can't equate this matrix to the observed data of that group, because it hasn’t got any!

Hmmm sorry | don't understand this keyword. Check NI= and FU/FI status of data matrices.

HEY! | thought you were going to say = but where'sthe =??

You can only have MA=CM,PM, or KM right now - sorry!

Pardon my ignorance here, but | don't understand this keyword. You should be using one of the
following: CMatrix, PMatrix, KMatrix, ACov_matrix, Raw_data, MEans, SKew, KUrtosis, LAbels,
SElect, or MATrices. Where at least the uppercase letters must be given. Quite possibly, an earlier
command screwed up. Thisiscommonly encountered in the middle of alist of numbersif thelististoo
long. This may be because you have given too many numbers for the type and size of the matrix
concerned, or alternatively you may have specified the dimensions of that matrix incorrectly. Note that
you should only supply numbers for the modifiable elements of a matrix, which depends heavily on the
type of matrix. See Section 4.5 for details on numbers of elementsin different types of matrices.
Imaginethis: I'mreading a number and | seea\ character, so | think. | know, it must be\PI or \E BUT
thento my surprise | seeit isneither. Do beless surprising in your input.

I'msorry, | can't writea matrix that doesn't exist to a file. Remember, thismatrix hasto be defined in this
group.

To output matrices to files, use Mx with 1 letter after it (exceptions %E %M %P %V) then an = sign.
No spaces or anything else allowed.

AAAAGH! You can't assign parameters to the raw data vector.

If you want to fit to the raw data vectors, you must put themin a vector that has 1 row and the columns
less than or equal to the number of input variables before selection, if any.

No, | won't et you do this. It would overwrite the first raw data observation. Go and edit your data
instead.

Uh-oh, attempt to take log of zero or negative value imminent.

In order to use Maximum Likelihood to raw data, it is necessary to supply both a model for the
covariances, and one for the means.

Sorry, the expected matrix is singular just now.

Just WHAT is this keyword supposed to mean? You should be using one of the following:
MEan_structure, THresholds, COvariances, SPecify, MAtrix, PArameter, FIx, FRee, EQual, VAlue,
STart, BOundary, OPtions, ENd, OUtput. Where at least the uppercase letters must be given.

You have tried to convert something that wasn't a vector into a matrix. Please try not to abuse \v2
functionsin this way.

At your starting values, evaluation of the log-likelihood made me take the logarithm of something less
than or equal to zero. Pleaserevisethe starting values. Nothingfor it... changethe starting values. This
could be aproblem if there are some gruesome outliers, in which case you'd have to edit your data... See
page 138 for details of how to interpret and respond to the diagnostics printed along with this error
message.

Your boundary constraint refers to a parameter not yet specified.

You have referred to a non-existent row of a matrix. It's silly mistakes like these that my job as a
computer *S0O* rewarding. MXx has alousy imagination when it comes to that sort of thing.

You havereferred to a non-existent column of amatrix. Therearelotsof non-existent columnsin Athens
and Rome.

You can't use the keyword Full when reading diagonal weight matrices or means.

SORRY | don't select DWLSwith correlation matricesyet. Try again after midnight? Seriously, I'm sorry
about this.

Error - you seemto have a non-integer value for the type of person. Please check: (1) you havetheright
pedigree size here (2) you have an integer type identifier for everyone (3) Nothing screwed up in an
earlier pedigree. Make sure that you have got your VL fileright. Be extra careful about SAS missing
values.

Please, you must tell me the covariance matrix structure in terms of id codes. Use the IC command to
do this, sometime after MO and before End.
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Thereisavariablein this pedigree whose id has not been given in the IC command. If no IC was given
avariablewho hasanid greater than Nl is present.. The mysterious stranger needsto beidentified and
deleted.

Your model does not define the covariance between TWO people with this ID. Of course, by default it
won't. You need to use the IC command correctly. See page 49.

An element of a matrix that you havetried to \sgrt() islessthan zero. Please don't let thishappen! This
version of Mx does not cater for complex numbers - most of the time.

You tried to convert a vector of thewrong length to a symmetric matrix. Hah, didn't think I'd notice eh?
I am only prepared to raise the elements of a matrix to the power of a scalar. Please try to ensure the
matrix totheright of a”is(1x1). Doyou have any better ideas? Kroneckerizeit or something likethat?
You tried to convert a vector of the wrong length to a FULL square matrix. Silly billy.

Eigenvalues of square matrices only, please.

Eigenvectors of square matrices only, please.

I'mafraid that if you want tofit to raw data you MUST supply modelsfor BOTH meansand covariances.
You have forgotten a model for the means. You might forget your head if it wasn't attached with lots of
sinews etc. Of course, you may have asked for the wrong kind of fit function on the Optionsline.
I'mafraid that if you want tofit to raw data you MUST supply modelsfor BOTH meansand covariances.
You have forgotten a model for the covariances. Thisisthe 783rd time you have made this mistake but
you have probably forgotten about the other times. Of course, you may have asked for the wrong kind
of fit function on the Options line.

If you are using Multiple fits, it is impossible to change the matrix formulae - and you can't change
boundaries either.

If you wish to Specify, Pattern, or matrix a matrix, you have to specify the group number **on the same
line** BEFORE the Specification, Pattern or Matrix statement.

Pleasetry * not* to refer to non-existent groups! | don’'t mind you having fantasies, but there are limits,
you know.

When using the Multiple option you *MUST* use 3 numbers to specify a matrix element: Group #, row
# and column #.

I'm*so* embarrassed. | ran out of workspace.

To read labels for a matrix, you must use the syntax: LABEL <R or C> Name.

Labelscan't be given for a non-existent matrix. Or rather they can, but Mx will stop. Actually they can,
but then the program stops immediately.

Labels may not begin with a number because it could confuse me later on.

Labels have not been provided for the data, but you seem to be using them to select variables. Use
numbers or " Give me labels or give me ..."

It would seem that you are trying to select a variable that you never supplied. | expect that, being
human, you made a mistake in the Labels or Select list.

| can't select a variable that doesn't exist. Make surethat NI iscorrect or fix the Select list.

Sorry, you can use covariance structuresONLY in constraint or cal culation groups; means not allowed.
Incorrect element of a lower triangular matrix specified.

Hey! You must have Ninputvars=2 to use contingency tables. A contingency table effectively
cross-tabulates two variables, hence NInputvars must be two on the Dataline.

I'm afraid that if you want to fit to contingency tables you MUST supply models for BOTH thresholds
and covariances. You have forgotten a model for the thresholds. Are these lapses of memory getting
morefrequent? Can’t remember?? Maybe you need a checkup... Alternatively you may have requested
the wrong fit function on the options line.

I'm afraid that if you want to fit to contingency tables you MUST supply models for BOTH thresholds
and covariances. You have forgotten a model for the covariances. Are these lapses of memory getting
more frequent? Can't remember?? Maybe you need a checkup... Perhaps you requested the wrong fit
function on the options line?

You must supply a matrix expression for the thresholds that will evaluate to a matrix with 2 rows and
with at least as many columns as one less than the number of row categories or the number of column
categories, whichever isgreater i.e. max(nrowcat-1,ncolcat-1). See page 75 for detailsabout threshol ds.
Sorry, but during optimization | have been asked to calculate a bivariate integral with a correlation of
1 or more. Thisis very unreasonable of you Please fix your model so that this doesn't happen. Use
boundaries or something. Note that the correlation is critical here, not the covariance. The correlation
iscal culated from the expected covariance matrix (theresult of themodel or covariance statement) ascov;;
+ Yvar;var;.
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Yes | will fit to n x n contingency tables BUT... n must be greater than or equal to 2. | know alxnis
feasible but | haven't written the code for it yet, OK?

If you want me to save or get an Mx binary file then you MUST supply a filename on the same line It's
just one of those thingsin life that you have to do.

We must have misunder stood each other somehow. You can't get expected proportions %P fromagroup
that isn't using contingency tables.

I think memory is screwed up because Mike Neale has screwed up. Call himon 804 786 8590. Or better
still, E-mail him on neale@ruby.vcu.edu or neale@vcuruby (bitnet). Has screwed up or is screwed up?
Well well well. You would like graphics. If so why don't you put an = after the DR command??? Mx
likes = signs before filenames. | don't know how it got into this habit.

Tofit to mean structuresaswell as covariances you should provide* both* observed meansand a model
for them (as well you know!) I'm going to use the covariances, but the mean - I'mjust going to ignore
it OK? Watch out for this oneif you don't seem to get any action with the means.

Redlly I'mvery very sorry about this. It isnot under my control. Unless of course | was to use a better
language than FORTRAN77 | suppose... However enough philosophising, the problemis that we have
reached the end of file too soon. Since you are using * format, you should put one case per line. That
isto say, there should be NObslineseach with NI variablesin a RA data file. Sometimes error messages
arenot just explicit, they areintrospective. How would you like to be acomputer program? Could be our
species destiny.

Really I'mvery very sorry about this. It isnot under my control. Unless of course | wasto use a better
language than FORTRANT77 | suppose... However enough philosophy, the problem is that we have
reached the end of file too soon. Make sure that your format is OK. Also, remember there should be
NObs* NI numbersin your RA data file. See previous error message for sci-fi remark.

Very funny. Hahaha. You want me to standardize a non-square matrix? Just how am | supposed to do
that? If you get any ideas, et me know.

Itiswith great sadnessthat | haveto tell you that | couldn't standardize your matrix because the number
I'msupposed to divide by istoo small. Perhapsyou could avoid this problemwith boundary constraints.
Poor machine, it tried!

You areinterribledanger. Don't say multiple until thelast group. | know | could have just remembered
for you, but I'mlazy too! There are only so many hoursin the day.

Sorry, old chap. You can't specify boundary constraints after options. | might remedy this problem one
day, but for now just meekly go back and put boundary constraints before the first option line in this
group.

Cough, ahem... can you please give me a matrix that has 1 row and 2 column for the power
transformation?? Currently it is only possible to apply a transformation to al variables within each
vector. This should be upgraded if thereis ever support for Mx; call your political representative now
to safeguard itsfuture...

For heaven's sake! Can't you bound your constant so that it is *Greater* than minus the minimum
observation??! Really most nursery school children have a good idea why this should be done.
Exponentiating (especially for non-integer exponents) numbersthat arelessthan zero is mathematically
awkward, requiring complex numbers and so on. To avoid complex arithmetic, whose implications are
unclear to mein this context, Mx demandsthat if, say, your minimum observation is -3.1, the constant
required would have to be greater than +3.1.

YIKES There's something funny about the power function you request. Remember that after PO you
should supply 2 numbers. The significance level (alpha) (0.0 < alpha < 1), and the degrees of freedom
of the test (df > 0). Sometimes NAG chokesif alphaisclosetoOor 1. | can't think why this shouldn't be
sdlf-explanatory. The numbers should be on the same line as the Power keyword. Note that Power in
this context refers to calculating the statistical power of the study (see page 114).

I can calculate confidence intervals in the range 0 to 100. Please try to stay within these bounds'.
Everyone has their limits, you know.

Look here buster, the matrix you \muln must have 3 more rows than it does columns.

Thereisa problemwith the multinormal integral that you tried to compute. Seeif you can be kinder to
me by using bounds.

Covariance matrices must be computed from sample sizes of at least 1. | suspect that you forgot to put
the NObs= parameter on the data line.

The operation you attempted using ~ is undefined in mathematicsin thisuniverse. Try using e.g. \abs()
if you can, or go to another universe!

Look here buster, the matrix you \mnor must have 4 more rows than it does columns.

Unknown matrix operator encountered!
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Your observed covariance matrix is not positive-definite. Check that you are reading it in the correct
format - Full or Symmetric.

Ooops. Somehow | was expecting a matrix with 4 more rows than columns for the \momnor function.
Remember, they should be organized this way: Covariance matrix/Mean vector/Thresholds in terms of
standardized units/Selection vector: 1=above, -1=helow, O0=not selected/Quadrature parameter
O=default=16; max=64.

Aha! You havetried to use algebra to create a matrix that already exists. Thisisstrictly illegal in Mx.
Godirectly to Jail. Do not passgo. Do not collect $200. And make sure you haven’t forgotten the End
Algebra; statement.

Hmmm you can’t call a matrix this. Not yet. Use single letters (A-Z) for now.

After the BEGIN keyword | expected to see one of the keywords ALGEBRA or MATRICES. Areyou
dyslexic? Oram|?

Well | was trying to find the above character, but even though | looked through the wholefile. | could
not find it. Perhaps you forgot it?

You seem to have put two binary operatorsin a row, which is bad syntax. Might this be a typo? Just
possibly?

| figure that you are trying to redefine something in this multi-group script but you have not used a
#define Group = n statement yet so | don’t know which group it is you wish to change.

Oh no you don’t. You can’t use a #define group statement unless you are (or rather | am) in multiple
fit mode.

Sorry, | don’t understand what you are trying to #define.

While searching for a number, | encountered a string more than 32 characterslong. Atfirst, | thought
it might be a global variable, but it is probably just your mistake.

*So* sorry! You can't use!@ inthetitle. It might confuse my front end.

| wastrying to read a number or a #define'd parameter, and although | found a delimiter, | got to the
end of the line before | found the number.

I know thisisrather silly of me, but | really need to know both NI= and NO= in order to read the data
sensibly. Pleaselook at the DA line.

Error: file not found: Check spelling and existence of file. Remember that UNIX is case sensitive.
Filenames have a maximum of 80 charactersincluding directory.

Once | saw the begin keyword, | thought, ‘ Aha | bet this user is going to say algebra or matrices next.’
Well | lost my bet. | don’t know what you want to begin.

You seemto be trying to end matrices with something other than ‘end matrices;’. It'snot that difficult,
isit?

Thisisa generic error message of no use to you whatsoever. Lots of software has error messages like
this, so | thought Mx should too. Please contact Mike Neale (neale@ruby.vcu.edu) for help.
I’'mterribly sorry about this old chap. You can’t use QQ asa missing data flag. It's Just one of those
things.

Ohboy. Therel wastrying to read stuff inrectangular format for you. And then | came acrossa blank
record. | suspect a mistake.

Ker-splat! | ran into some peculiar FORTRAN read error. Check the data file for Suspicious
Characters.

An error has occurred while reading a rectangular file. Make sure that you *don’t* have a FORMAT
at the beginning and note, | can’t read numbers that begin with D, Q or E.

Oooooh! Weird one. Your data file seems to be empty.

Sorry, I'mjust not ready to save at this point.

This might seem a bit picky of me, but if you are going to simulate data. I'd like to know HOW MANY
casesto simulate. Please give NI=n on the Smulate line, where nis a positive integer. Thank you.
Now look here. To simulate data you need to have a matrix formula for the Covariances which is
*Square*, i.e., rows = columns above.

Well there | was, all ready to equate all the matricesin thisgroup to those of a previous group, and then
you didn’t put *which* group onthe sameline. Try, e.g., Matrices= Group 1. Note that you * must*
have a space after the word group.

Unbalanced parentheses in your formula. I'mnot big into Yin & Yan but thisisone area that I'd like
more balance.

| can't give you the sort order of this*column vector* because it has more than one column!!
Partition requires syntax \part(A,B) where B has 4 rows and one column. Somehow you didn’t do this
right.

No no no. The second matrix in the list \part(A,B) must have 4 rows and 1 column.
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187. I'mafraid that you can’t use & between matricesthat are not conformable. In this case, the number of
columnsin the first matrix must equal the number of rows in the second matrix, which must be square
(rows of b=cols of b).

188. Look, how am| supposed to know what these elements outside the dimensions of the matrix are??

189. Thepartitionfunctionistricky, | know. Make surethat the coordinate (2nd) matrix hasbeeninitialized
FIRST. Seethe example partit.mx for details on how to do this.

190. OKwiseguythat'sfar enough! Thegroup you referenced with %0 doesn’t have an observed covariance
matrix!

191. The matrices you wish to divide with % are not conformable. The number of rowsin matrix 1 must be
the same as the number of rowsin matrix 2, *and* the number of columnsin matrix 1 must be the same
as the number of columnsin matrix 2.

192. | believe you read in the inverse of a weight matrix, sir? In that case you can't use select variables,
because it defeats the point of saving time by pre-inverting.

193. To use the computed matrix type, you have to put = M 1 on the same line, where M isa matrixand 1 is
an earlier group. I’'mnot psychic. How am | supposed to know which computed matrix you want it to
equal?

194. Hang on a minute! You can *only* use the computed matrix type to refer to matrices generated in a
Begin Algebra section.

195. Yoo-hoo! You're supposed to a letter here...

196. Gadzooks! You didn't supply a compute statement in that group. Therefore, | can’t make this matrix
equal to the %E of it.

197. Huh?I don’t understand your optional command lineparameters. Syntax shouldbee.g.,: mx-f-h-k100
myfile.mx myfile.mxo where f denotes frontend, h requests html, and k is workspace. Note: -f implies
reading from keyboard and writing to screen.

198. You must put the filename on the same line when using ! @get,! @put or ! @exist.

199. Huh?

200. Fileexists;, use! @PUT! to overwriteit.

Some of these error messages are alittleinformal. | apologize. I'm terribly terribly sorry
and | won't do it again.

What | amreally sorry aboutisif Mx givesyou thewrong error message. Thisisquiterare,
but occasionally it is possible to screw up memory, and one of the sensitive areas is the
matrix formula. When this has occurred, you may see

“Dump of formula being calculated”

whilethe programisrunning. Itisimportant to check theformulae, but if they seem ok, it's
time to email technical support. One untrapped sourceisif you say

Start 5A123toA223

in which case everything between the memory addresses of A of group 1 and A of group 2
gets overwritten with .5. A little care can go along way; so can a little more fool proof
programing which | shall try to provide as soon as | can. Please let me know of any
nonsensical error messages that you get; elucidation is prerequisite for elimination.
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Appendix C Introduction to Matrices

C.1 TheConcept of aMatrix

A matrix is atable of numbers or symbolslaid out in rows and columns, e.g.

z z z

a'll a'12 a'13

or |8y &y, ay
4y B Ay
Thetableisenclosedin () or [ ] in most texts.

It isconventional to specify the configuration of the matrix in terms of RowsxColumnsand
theseareitsdimensions. Thusthefirst matrix aboveisof dimensions 3 by 2 and the second
isa3x 3 sguare matrix.

The most common occurrence of matrices in behaviora sciences is the data matrix where
the rows are subjects and the columns are measures. e.g.

WL H.
S [ 50 20
S, |100 40
S, |150 60
S, [200 80

It is convenient to let asingle letter symbolize a matrix. Thisis written in UPPERCASE
boldface.

Thuswe might say that our datamatrix isA, which in handwriting we would underlinewith
either a straight or a wavy line. Sometimes a matrix may be written ,A, to specify its
dimensions. When amatrix consistsof asinglenumber, itiscalled ascalar; whenit consists
of single column (row) of numbersit is called a column (row) vector. Vectors are normally
represented as abold lowercase. Thus the weights of our four subjects are

50
100
150
200
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C.2 Matrix Algebra

Matrix algebra defines a set of operations that may be performed on matrices. These
operations include addition, subtraction, multiplication, inversion (multiplication by the
inverseis similar to division) and transposition.

Transposition

A matrix is transposed when the rows are written as columns and the columns are written
asrows. This operation is denoted by writing AN or A'. In our example,

.- 50 100 150 200
20 40 60 80

arow vector isusually written

al " (50 100 150 200)
Clearly, (ANN = A.
The Mx script would look as follows:

Title: transpose of matrix A
Calculation NGroups=1

Begin Matrices;
A Full 4 2
End Matrices;
Matrix A

50 20

100 40

150 60

200 80

Begin Algebra;
B= A”;

End Algebra;

End

Matrix Addition and Subtraction

Matrices may be added and to do so they must be of the same dimension. They arethen said
to be conformable for addition. Each element in the first matrix is added to the
corresponding element in the second matrix to form the same element in the solution, e.g.
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14 8 11 9 15
25 %9 12 * |11 17
36 10 13 13 19

or symbolically, A+ B =C.

Y ou cannot add

14
8 10
2 5| %

Subtraction works in the same way as addition, e.g.

14 25 &l &1
251125 " 0 O
36 25 1 1

whichiswritten A -B =C.

Matrix Multiplication

Matrices may be multiplied and to do so they must be conformable for multiplication. This
means that adjacent columns and rows must be of the same order. For example, the matrix
product ;A,%,B, may be cal culated; theresultisa3x 2 matrix. In generd, if we multiply two
matrices A, x;By, the result will be of order ixk.

Matrix multiplication involves calculating asum of cross products among rows of thefirst
matrix and columns of the second matrix in all possible combinations, e.g.

13 1x1 % 4x2 1x3 % 4x4 9 19
(2 4) " 2x1 % 5%x2 2x3 % 5x4] - 12 26
3x1 % 6x2 3x3 % 6%x4 15 33

Thisiswritten AB =C.

The only exception to the above rule is multiplication by a single number called a scaar.
Thus for example,
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14 2 8
2 125 " (410
36 6 12

by convention we writethis2 A.
It is not possible to use this convention directly in Mx; however, it is possible to define a
1x 1 matrix with the constant 2.0 as the sole element, and use the kronecker product.

The simplest example of matrix multiplication is to multiply a vector by itself. If we
premultiply acolumn vector by itstranspose, the result isascalar called theinner product.
For example, if

a " (@123
then the inner product is
1
ala® (123 |2 " 1°%22%3 " 14
3

which isthe sum of the squares of the elements of the vector A. Thishasasimple graphical
representation when A is of dimension 2x 1 (see Figure C.1).

o

FigureC.1 Graphical representation of the inner product @' a of a(2x 1) vector a, with
a'=(xy). By Pythagoras theorem, the distance of the point VV from the origin O is y/x %%y 2,
which isthe square root of the inner product of the vector.
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Multiplication Exercises

Try these exercises either by hand, or using Mx, or both, as suits your needs.

Let
36 1 0 3 2
A~ , B~
21 0 &l &1 1
1. Form AB.
2. Form BA. (Careful, thismight be atrick question!)
Let
36 12
c- , D~
21 34
1. FormCD.
2.  FormDC.
3. Inordinary algebra, multiplication is commutative, i.e. Xy=yx. In general, is matrix

multiplication commutative?
4.  Show for two (preferably non-trivial) matrices conformable for multiplication that

(AB)N = BNAN
Let
103
EN *
121
1.  Form E(C+D).
2. FormEC +ED.
3. Inordinary agebra, multiplication is distributive, i.e. X(y+2) = xy+xz. In generad, is

matrix multiplication distributive?
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C.3 Equationsin Matrix Algebra

Matrix algebra provides a very convenient short hand for writing sets of equations. For
example, the pair of simultaneous equations

y, T 2x % 3x,
Y, T X %X,

may be written

yN " AX

RN

Also if we have the following pair of equations:

y " Ax
X " Bz

Then

y " A(B2
" ABz
" Cz

where C=AB. This is very convenient notation compared with direct substitution.
Structural equations are written in this general form, i.e.
"Real variables (y) = matrix x hypothetical variables."

To show the simplicity of the matrix notation, consider the following equations:

y, T 2% % 3x,
Y, " X % %
X"z %g
%"z ly

Then we have
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Y1 " 2z, % z) % 3z, ! Z)

521!22

Y, " (z%Z)%(z ! z)
" 22, %0

) efial

From y=ABz, where

and
5 &1
AB * ,
2 O)
or
v, "5 1 g
Y, " 2z,

C.4 Calculation of Covariance Matrix from Data M atrix

Suppose we have a data matrix A with rows corresponding to subjects and columns
corresponding to variables. We can calculate amean for each variable and replace the data
matrix with amatrix of deviations from the mean. That is, each element a; is replaced by
a; 1y, where 1, isthe mean of thej" variable. Let us call the new matrix X. The covariance
matrix isthen simply calculated as:

LXNx
N&1

where N is the number of subjects.

For example, suppose we have the following data:

X Y XIX YIY
1 2 12 14
2 8 11 2
3 6 0 0
4 4 112
5 10 2 4
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s0 the matrix of deviations from the mean is

12 14
L
X" 0 O
112
2 4

and therefore the covariance matrix of the observationsis

82 &4

g2 810 12 ¥ 2

L yx -1 0 0
N&L 4l84 2082 4

182

2 4

. 1/10 12
4\12 40

(25 3.0)
3.0 10.0
|80 Sy
Sy §
The correlation is
Sy« Sy
SqutSfS/2 SS,

In general, a correlation matrix may be calculated from a covariance matrix by pre- and
post-multiplying the covariance matrix by a diagonal matrix D in which each diagonal
eement d; is1+S, i.e. thereciprocal of the standard deviation for that variable. Thusin our
two variable example, we have:

IR
Jlas)logf " lns

o v~
o M|H
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Transformations of Data M atrices

Matrix algebraprovidesanatural notation for transfor mations. If we premultiply the matrix
iB; by another, say , T, then the rows of T describe linear combinations of the rows of B.
The resulting matrix will therefore consist of k rows corresponding to the linear
transformations of the rows of B described by the rows of T. A very simple example of this
is premultiplication by the identity matrix (written I), which merely has 1's on the leading
diagonal and zeroeseverywhereel se. Thusthetransformation described by thefirst row may
be written as 'multiply the first row by 1 and add zero times the other rows." In the second
row, we have 'multiply the second row by 1 and add zero times the other rows," and so the
identity matrix transforms the matrix B into the same matrix. For alesstrivial example, let
our data matrix be X, then

(&2 &1 0 1 2)
X) -

&4 2 0 &2 4
and let
1 1
T -
181
then
Y) = TX)

(& 1081 6
28 0 3 &2

Inthiscase, thetransformation matrix specifiestwo transformationsof thedata: thefirst row
definesthe sum of the two variates, and the second row defines the difference (row 1 - row
2). In the above, we have applied the transformation to the raw data, but for these linear
transformations it is easy to apply the transformation to the covariance matrix. The
covariance matrix of the transformed variatesis

iy y - L(TX N(TX))
N&1 N&1
- L moxm
N&1
" TV,T)

whichisauseful result, meaning that linear transformations may be applied directly to the
covariance matrix, instead of going to the trouble of transforming all the raw data and
recal culating the covariance matrix.
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Deter minant of a Matrix

For a square matrix A we may calculate a scalar called the determinant which we write as
[A]. In the case of a2x 2 matrix, this quantity is calculated as

AL a3, a8,

The determinant has an interesting geometric representation. For example, consider two
standardized variables that correlate r. This situation may be represented graphically by
drawing two vectors, each of length 1.0, having the same origin and an angle cosine r
between them (seefigure C.2). It can be shown (i.e. thisisatoughiethat involves symmetric
square root decomposition of matrices, eigenvalues etc. that I'm not going to do here) that
the area of the triangle OV,V, is .5/JA|. Thus as the correlation r increases, the angle
between the lines decreases, the area decreases and the determinant decreases. For two
variables that correlate perfectly, the determinant of the correlation (or covariance) matrix
is zero. For larger numbers of variables, the determinant is a simple function of the
hypervolume in n-space; if any single pair of variables correlates perfectly then the
determinant is zero. In addition, if one of the variablesisalinear combination of the others,
the determinant will be zero.

O

FigureC.2 Geometric representati on of thedeterminant of amatrix. Theangle between
thevectorsisthe cosineof the correl ation between two variables, so thedeterminantisgiven
by twice the area of the triangle OV, V..

To calculate the determinant of larger matrices, we employ the concept of acofactor. If we

deleterow i and column j from an nx n matrix, then the determinant of the remaining matrix
is called the minor of element a;. The cofactor, written A; issimply:

AT (&1)"™ minor a
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The determinant of the matrix A may be calculated as
AT BAA

where nisthe order of A.

The determinant of amatrix isrelated to the concept of definiteness of amatrix. In generdl,
for anull column vector x, the quadratic form xNAX is always zero. For some matrices, this
guadraticiszeroonly if x isthe null vector. If xXNAXx>0 for all non-null vectorsx then we say
that the matrix is positive definite. Conversely, if xNAx<O for al non-null x, we say that the
matrix is negative definite. However, if we can find some non-null x such that xNAx=0 then
thematrix issaid to be singular, and its determinant is zero. Aslong asno two variables are
perfectly correlated, and there are more subjects than measures, a covariance matrix
calculated from data on random variables will be positive definite. Mx will complain (and
rightly so!) if it is given a covariance matrix that is not positive definite. The determinant
of the covariance matrix can be helpful when there are problems with model-fitting that
seem to originate with the data. However, it is possible to have a matrix with a positive
determinant yet which isnegative definite (consider -1 with an even number of rows), so the
determinant is not an adequate diagnostic. Instead we note that all the eigenvalues of a
positivedefinitematrix are greater than zero. Eigenval uesand eigenvectorsmay beobtained
from software packages and the numerical libraries listed above'.

Inverseof aMatrix

Just asthere are many usesfor the operation of division in ordinary algebra, there are many
valuable applications of theinverse of amatrix. Wewritetheinverse of thematrix A asA'?,
and one of the most important resultsis that

AA' " |

where | isthe identity matrix. In this case, the multiplication operation is commutative, so
itisalso true that

AVA T

There are many computer programs available for inverting matrices. Some routines are
general, but there are often faster routines available if the program is given some
information about the matrix, for example whether it is symmetric, positive definite,
triangular or diagonal. Here we describe one general method that everyone should use at
least oncein their livesfor at least a 3x 3 matrix.

™ Those readers wishi ng to know more about the uses of eigenvalues and eigenvectors may consult Searle
(1982) or any general text on matrix algebra.
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Procedurefor Inversion of a General Matrix
In order to invert amatrix, the following four steps can be used:

1 Find the determinant

2 Set up the matrix of cofactors
3.  Transpose

4 Divide by the determinant

For example, the matrix

~[1

1
A] " (1x5)&(2x1) * 3
2.
@y @1y
A (81)%2 (&1)*x1
N &1)
&2 1
3.
. ( 5 &2)
AT lar 1
4.
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To verify this, we can multiply AA'* to obtain the identity matrix:
1 5&|{12 _1(30 (10
3ler 1)l15) 3lo3 (o1

The result that AA' =1 may be used to solve the pair of simultaneous equations:

X%2x, * 8
X, %%, * 17

which may be written

AAx " A
x " Ally

which may be verified by substitution.

For alarger matrix it is more tedious to compute the inverse. Let us consider the matrix

1 10
A1 01
1&10
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1. The determinant is

1 1 0

ol al

01 1
Al = %1 ﬁ&l oﬁ &1 ﬂl

" %1%1%0
"2

2. The matrix of cofactorsis:

'[y 01 11 10
%1 o 41 o "1 e

., 10 10 1 1
A &ﬂ&l oﬂ /Oﬁl oﬂ &ﬂl &1ﬂ
10 10 11
o1 H14 M d

1 1&
10 0 2
14&1 &1

The transposeis

10 1
A"l 10&l
&l 2 &l

Dividing by the determinant, we have

10 1 50 5
At=11 1081 -] 50es5
g1 2 81) \&5 1 &5

which may be verified by multiplication with A to obtain the identity matrix.
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Appendix D Reciprocal Causation

Consider the Path Diagram in Figure D.1.

Cr———®)

%1

FigureD.1 Feedback loop between two variables, x, and x,.

This shows afeedback |oop between two internal variables, which we call x variables. The
total variance of x; and x, is the sum of the infinite geometric series:

2.2 3_3
0, 0,
ayay, % ayag, % ayay, ..

It issimple to show that if |a,,a;,| < 1 then the series converges. Let the sum of the series
of ntermsbecalled S, and let a;,a,,=r. Then

ST r%r*%r3% .r"
rS™r2%r3% .. r"o% r™t

Thus the difference between these two equationsis:

(1&nSs, " r&rmt

and so
. r& rml
Sh 1& r
which as n getslarge tendsto
r
s "
o1&
. 1 & 1& r
1& r 1& r
-1 e
1& r
- 1 &1

1& a3,
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Thisformulageneralizesto the case of amatrix of such effects between morethan apair of
variables (Joreskog & Sorbom, 1989). In general

ABA2BAZY... = (1 &A)EL&I

Another way to see this formulation is directly from the structural equations. Figure D.2
shows a multivariate path diagram of a structural equation model, where x variables are
caused by aset of independent variables, y. In addition, the x variables may cause each
other, hence the unidirectional arrow from x to itself.

'O

\X ‘DA

FigureD.2 Structural equation model for x variables

Algebraically, the model for the x variablesis:

X " Ax%lz
" Ax%z

Here x appears on both sides of the equation, and we want it solely in terms of the other
variablesin themodel. Hence

X&AX " z

(I1&A)X * z
(1 &A1 &A)X ™ (1&A)% 2z
x " (1&A)¥z

xX " (1&A)4z((1 &A)42)
" (1&A)* 22 (1 & A
" (1&A)S(1&A)E

This givesageneral expression for all variablesin amaodel, both latent and observed. We
usually want to predict the covariance between the observed variables only, so that thiscan
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be compared with (“fitted to”) thedata. A dight addition to the model isneeded to filter the
observed variables from the set of all variables (see figure D.3).

7N

\X/DA
F
/‘y\
./

FigureD.3 Structural equation model for y variables

The algebra for the covariance of the observed variables, y, isvery similar.

y " Fx
( &A)&lz

yy " F(I1&A)*z(F(1&A)5 2)
" F&A)¥Z2(1&AR P
" FI1&A)S(1&A) P

This model can efficiently and elegantly be specified in Mx using the formula:

F&((I&A) & S)

which invokes the quadratic operator & (see p. 63).
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Appendix E Frequently Asked Questions

Hereisalist of some of the frequently asked questions about Mx GUI.

#

Q. My jobistaking along timeto run. How can | see what's happening? A. If you
arerunning ajob onthelocal PC, thenyou can doubleclick onthe MXE iconwhich
will giveadisplay of the progress of the optimization. Every 20 iterationsthe value
of thefit function will be updated. If youarerunningonaUnix host, thenthereisn't
much that can be done, except to log in to the machine. If you have used Option
NAG=10 DB=1 then you could view (e.g. using more or tail) the end of the
NAGDUMP.OUT file for the latest set of parameter estimates and fit function.

Q. What does ‘ Appears OK’ mean as a fit result? What about the other codes? A.
Appears OK means that optimization seemsto be successful. Optimizationisnot an
exact science so we can't be 100% sure that a global optimum has been found. The
other codes and what you should do about them are shown in
Table~\ref{ tab:optcodes} in this document.

Q. How can | learn more about the Mx script language? A. Chapters #-# and the
quick reference chart are the best place to learn the language, with the possible
exception of attending a course. To date most Mx courses have concerned genetic
models, although some non-genetic courses have been run at the University of
Southern Californiaand The University of Arizona. Future courseswill beannounced
on the Mx web page http://views.vcu.edu/mx.

Q. Help! My diagram has disappeared in the window when | was zooming. How do
| get it back? A. Pressthe zoomundo button =,

Q. How do | sdlect a different browser or text file viewer? A. Select
Preferences|Select Test Viewer or Preferences|Select HTML Viewer from the menu
bar.

Q. How do | work with contingency table data in the GUI? A. Unfortunately itisnot
possible to model contingency table datawith the GUI at thistime. It ispossible to
draw a diagram for two observed variables (leave them unmapped) and then hit To
Script to build a basic script from a two-variable model. Then edit this script to
replace the CMatrix with CTable dataand add amaodel for the thresholdsin the script
itself. This does at least avoid the scary part of specifying the structural equation
model with matrix algebra. We hope to add contingency table modeling in thefuture.
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