

Release Notes

Version 7.3.1

January 09, 2026

© 2026 Cohesity, Inc. All rights reserved.

Cohesity, the Cohesity logo, SnapTree, SpanFS, DataPlatform, DataProtect, Helios, the Helios logo, DataGovern, SiteContinuity, DataHawk, and other Cohesity marks are trademarks or registered trademarks of Cohesity, Inc. in the US and/or internationally. Other company and product names may be trademarks of the respective companies with which they are associated. This material (a) is intended to provide you information about Cohesity and our business and products; (b) was believed to be true and accurate at the time it was written, but is subject to change without notice; and (c) is provided on an "AS IS" basis. Cohesity disclaims all express or implied conditions, representations, warranties of any kind.

No part of this documentation or any related software may be reproduced, stored, transmitted, or otherwise distributed in any form or by any means (electronic or otherwise) for any purpose other than the purchaser's personal use without the prior written consent of Cohesity, Inc. You may not use, modify, perform or display this documentation or any related software for any purpose except as expressly set forth in a separate written agreement executed by Cohesity, Inc., and any other use (including without limitation for the reverse engineering of such software or creating compatible software or derivative works) is prohibited, except to the extent such restrictions are prohibited by applicable law.

Published on January 09, 2026

Contents

Disclaimer	3
What's New?	3
Cohesity Feature Deprecation	14
Upgrading to 7.3.1	14
Considerations	21
Fixed Issues	32
Security Fixes	32
Cohesity Support	36
Documentation Feedback	37

Disclaimer

Features and functionalities herein may become subject to a separate license requirement/fee (even if free during an initial period).

Cohesity provides from time to time - in release notes or in other communications to our customers - written updates about end of support for third-party software versions. Such updates are for informational purposes only, and are not a substitute for information you receive directly from third-party software publishers. Cohesity support practices align to third-party end of support, and as such Cohesity will not in any case support a version of third-party software that is no longer supported by its publisher. For further/up-to-date information, see the [Third-Party Software Support Matrix for Cohesity Data Protection](#).

What's New?

Cohesity Platform 7.3.1 provides new features and enhancements available for on-premises hardware, Cloud Edition, and Virtual Edition clusters. For more information, see [What's New in 7.3.1?](#).

For more information on upgrading from previous releases to 7.3.1, see [Upgrading to 7.3.1](#).

For more information on previous releases, see [What's New in Earlier Releases?](#)

What's New in 7.3.1?

The following new features and improvements are available in this release. For important information about upgrading from previous releases to 7.3.1, see [Upgrading to 7.3.1](#).

Early Access (EA) Feature

From time to time, Cohesity may add features and request for feedback on their utility and design. These features are termed as Early Access features. Early access features are limited to a closed group of testers for a limited subset of launches. Participation is by invitation only and may require signing a pre-general-availability agreement, including confidentiality provisions. These features may be unstable, change in backward-incompatible ways, and are not guaranteed to be released. There are no SLAs provided and no technical support obligations. These EA features are by default disabled and hidden and need to be enabled separately. If you wish to use these EA features you need to contact your accounts team, who will internally work within Cohesity to enable the feature on your cluster. Cohesity recommends running these features only on non-production clusters.

Controlled Availability (CA) Feature

A production-quality Cohesity product or feature made available to a limited set of customers. Contact your Cohesity account team to participate.

Data Protection

Virtualization

Network Configuration Options for AHV Recovery

AHV recovery now supports network configuration options such as Preserve MAC addresses when recovering VMs to a new location, Start Connected when recovering VMs to both original and new locations, and recover VMs to both original and new locations with the same number of NICs as the source. For more information, see [Recover VMs to a New Location](#) and [Recover VMs to the Original Location](#).

Recovery Between On-prem VMware and Azure VMware Solution (AVS)

Cohesity now supports VM recoveries between On-prem VMware and Azure VMware Solution (AVS). For more information, see [AVS](#).

Enhanced Performance for VCD Full Refresh Operations

Cohesity now provides improved performance for VCD protection sources for full refresh operations, resulting in reduced full refresh completion times.

Enhanced VM Backup Process for Red Hat OpenShift Virtualization

Cohesity now uses the VM Snapshot API that enables taking a single snapshot of all volumes associated with a VM in one backup operation. For more information, see [Backup Red Hat OpenShift Virtualization](#).

Instant Recovery for Red Hat OpenShift Virtualization Controlled Availability

Cohesity now supports Instant Recovery to both original and alternate locations for Red Hat OpenShift Virtualization, enabling VMs to be immediately available in the target location after a recovery operation. For more information, see [Recovering Selected VMs to the Original Location](#) and [Recovering Selected VMs to an Alternate Location](#).

Note: This is a Controlled Availability feature. Contact your Cohesity account team to enable the feature.

[Browse and Download Files in Red Hat OpenShift Virtualization](#)

Cohesity now supports file and folder browsing and download capabilities for Red Hat OpenShift Virtualization. This feature allows you to browse VM content and download single or multiple files or folders through the web interface. For more information, see [Browse and Download Files and Folders in Red Hat OpenShift Virtualization](#).

[NAS](#)

[Protect Nutanix Files Clusters Early Access](#)

Cohesity now supports backup and recovery for Nutanix Files cluster deployments. You can protect multiple Nutanix Files clusters using Prism Central or one cluster at a time using Prism Element protection. For more information, see [Nutanix Files](#).

Note: This is an Early Access feature. Contact your Cohesity account team to enable the feature.

[Kubernetes](#)

[Include or Exclude Resource Types from Kubernetes Namespace](#)

During the backup of Kubernetes namespaces, you can now include or exclude resource types using the **Enable Resource Inclusion/Exclusion** option. You can back up only PVCs without capturing entire pods or other Kubernetes resources. For more information, see [Exclude or Include Resources](#).

[Include or Exclude Resource Types during Recovery for Kubernetes](#)

Cohesity now allows you to choose which resource types to include or exclude during recovery by enabling the **Resource Inclusion/Exclusion** toggle under Recovery Options for both original and new locations. For more information, see [Recovering Namespaces to the Same Location](#) and [Recovering Namespaces to an Alternate Location](#).

[Physical Servers](#)

[Files and Folders Backup for Linux on ARM \(aarch64\)](#)

Cohesity now supports backup and recovery of files and folders for Linux on ARM (aarch64). For more information, see [Install and Manage the Agent on Linux Servers](#).

Databases

Improved Deduplication Engine for SQL File-based CBT backups

Cohesity now supports an efficient Source-Side Deduplication mechanism (to detect changed blocks) for SQL Server File-based backups, that tracks the block-level changes and maintains CPU efficiency even when CBT (Change Block Tracking) is unavailable. For more information, see [Backup Microsoft SQL Server \(File-based\)](#).

Flat File Recovery for SQL Server

Cohesity now supports recovering the SQL database backup files, rather than as a database. This provides flexibility for self-service recovery where direct access to the backup files is required. For more information, see [Recover Microsoft SQL Server Database as Flat Files](#).

Depending on the backup method, you can recover database files for file-based backup, native backup files for VDI-based backup, and transaction log files for Point-in-Time recovery.

Support for Parallel SQL Server Log Backup

During SQL Server backup, Cohesity now supports running additional log backups in parallel with existing log backup runs. This helps reduce storage buildup on the primary SQL Server when multiple large backups are in progress.

This feature is supported only for file-based, VDI-based, and Filestream (backed up using VDI-based method) backups. For more information, see [Backup Microsoft SQL Server \(File-based\)](#), [Backup Microsoft SQL Server \(VDI-based\)](#), and [Backup Microsoft SQL Server FILESTREAM Databases](#).

Support for Percona MySQL Data Protection

Cohesity now supports the backup and recovery of Percona MySQL deployments. For more information, see [Percona MySQL on Linux](#).

Roll Forward Recovery for PostgreSQL

Cohesity now supports Roll-forward recovery for PostgreSQL instances using the latest backup snapshots and Write-Ahead Logging (WAL) files. This feature uses the most recent snapshot and associated WAL files to recover the instance, ensuring that the latest committed transactions are recovered with minimal latency. For more information, see [Roll Forward Database](#).

Note: Cohesity supports snapshot-based recovery only. Instant recovery is not supported for PostgreSQL instances.

PostgreSQL Backups and Recovery by Non-Admin Users

Cohesity now supports backup and recovery operations for non-admin users when using PostgreSQL version 15 or later. A built-in script is provided that grants the necessary permissions for non-admin users to perform these operations. For more information, see [Plan and Prepare for PostgreSQL Protection](#).

Enhanced User Experience for PostgreSQL Registration, Protection and Recovery

Cohesity now provides enhanced user experience for registering, protecting, and recovering PostgreSQL instances. A migration script is available to help transition your existing PostgreSQL protection configurations on the Cohesity cluster to the enhanced experience. For more information, see [PostgreSQL](#).

HDFS Connection Protocol Support in Hadoop Registration Early Access

Cohesity now allows you to specify the HDFS connection protocol when registering Hadoop applications as sources. This improves Hadoop's backup and recovery performance and offers greater flexibility and compliance for TDE-enabled environments. For more information, see [Register a Hadoop Source](#).

Note: This is an Early Access feature. Contact your Cohesity account team to enable the feature.

NFSv4.1 Protocol Support for Oracle Backup and Recovery

Cohesity now supports selecting the NFS protocol version (NFSv3 or NFSv4.1) when configuring Oracle backup, recovery, and clone jobs. For more information, see [Protect Oracle Database](#), [Recover Oracle Database](#), and [Clone Oracle Database](#)

Redirected Mapping of Tablespace Directories for PostgreSQL

During recovery, Cohesity now supports mapping PostgreSQL tablespaces to an alternate directory. This enhancement ensures successful recovery when the original file system is unavailable or has insufficient disk space. For more information, see [Regular Restore](#).

Enhanced Oracle RAC Connectivity for Reliable Discovery and Protection

The Cohesity Oracle connector can now connect to any reachable endpoint on each Oracle RAC node, without relying solely on the node list returned by olsnodes. This enhancement enables the Cohesity cluster to discover the RAC environment and perform backup and recovery operations even when certain endpoints are inaccessible, eliminating the need for manual endpoint updates.

DataProtect for Cloud in AWS

Support for Amazon RDS MySQL Data Protection

Cohesity now supports the protection of Amazon RDS for MySQL at database-level by ingesting data into DataProtect for cloud in AWS. For more information, see [Amazon Relational Database Service for MySQL](#).

Support for Amazon Aurora MySQL Data Protection

Cohesity now supports the protection of Amazon Aurora MySQL at database-level by ingesting data into DataProtect for cloud in AWS. For more information, see [Amazon Aurora MySQL](#).

Support for Amazon RedShift Cluster Data Protection Controlled Availability

Cohesity now supports the protection of Amazon Redshift cluster at database-level by ingesting data into DataProtect for cloud in AWS. For more information, see [Amazon Redshift Cluster](#).

Note: This is a Controlled Availability feature. Contact your Cohesity account team to enable the feature.

Support for Amazon DocumentDB Data Protection Controlled Availability

Cohesity now supports the protection of Amazon DocumentDB at database-level by ingesting data into DataProtect for cloud in AWS. For more information, see [Amazon DocumentDB](#).

Note: This is a Controlled Availability feature. Contact your Cohesity account team to enable the feature.

Support for Amazon RDS for Oracle Data Protection Controlled Availability

Cohesity now supports the protection of Amazon RDS for Oracle by ingesting data into DataProtect for cloud in AWS. For more information, see [Amazon Relational Database Service for Oracle](#).

Note: This is a Controlled Availability feature. Contact your Cohesity account team to enable the feature.

Support for Amazon DynamoDB Data Protection Controlled Availability

Cohesity now supports the protection of Amazon DynamoDB at table-level by ingesting data into DataProtect for cloud in AWS. For more information, see [Amazon DynamoDB](#).

Note: This is a Controlled Availability feature. Contact your Cohesity account team to enable the feature.

Support for Amazon RDS PostgreSQL Data Protection Controlled Availability

Cohesity now supports the protection of Amazon RDS for PostgreSQL at database-level by ingesting data into DataProtect for cloud in AWS. For more information, see [Amazon Relational Database Service for PostgreSQL](#).

Note: This is a Controlled Availability feature. Contact your Cohesity account team to enable the feature.

Support for Amazon Aurora PostgreSQL Data Protection Controlled Availability

Cohesity now supports the protection of Amazon Aurora PostgreSQL at database-level by ingesting data into DataProtect for cloud in AWS. For more information, see [Amazon Aurora PostgreSQL](#).

Note: This is a Controlled Availability feature. Contact your Cohesity account team to enable the feature.

Support for Amazon RDS for Microsoft SQL Server Data Protection Controlled Availability

Cohesity now supports the protection of Amazon RDS for Microsoft SQL Server (MS SQL) at database-level by ingesting data into DataProtect for cloud in AWS. For more information, see [Amazon Relational Database Service for Microsoft SQL Server](#).

Note: This is a Controlled Availability feature. Contact your Cohesity account team to enable the feature.

DataProtect for Cloud in Azure

Support for Azure Blob and Data Lake Storage Data Protection

You can now perform the backup and recovery of Azure Blob and Azure Data Lake Storage on DataProtect for cloud in Azure. For more information, see [Azure Blob Storage and Azure Data Lake Storage](#).

Support for Azure SQL Database Protection Controlled Availability

Cohesity now supports the protection of SQL databases at database-level by ingesting data into DataProtect for cloud in Azure. For more information, see [Azure SQL Database](#).

Note: This is a Controlled Availability feature. Contact your Cohesity account team to enable the feature.

Support for Azure Table Storage Protection Controlled Availability

Cohesity now supports the protection of Azure Table Storages at database-level by ingesting data into DataProtect for cloud in Azure. For more information, see [Azure Table Storage](#).

Note: This is a Controlled Availability feature. Contact your Cohesity account team to enable the feature.

Support for Azure Cosmos DB – Table Data Protection Controlled Availability

Cohesity now supports the protection of Cosmos DB – Table tables at database-level by ingesting data into DataProtect for cloud in Azure. For more information, see [Azure Cosmos DB - Table](#).

Note: This is a Controlled Availability feature. Contact your Cohesity account team to enable the feature.

Support for Azure Cosmos DB – Cassandra Data Protection Controlled Availability

Cohesity now supports the protection of Cosmos DB – Cassandra keyspaces at database-level by ingesting data into DataProtect for cloud in Azure. For more information, see [Azure Cosmos DB - Cassandra](#).

Note: This is a Controlled Availability feature. Contact your Cohesity account team to enable the feature.

Support for Azure Cosmos DB – NoSQL Data Protection Controlled Availability

Cohesity now supports the protection of Cosmos DB – NoSQL databases at database-level by ingesting data into DataProtect for cloud in Azure. For more information, see [Azure Cosmos DB - NoSQL](#).

Note: This is a Controlled Availability feature. Contact your Cohesity account team to enable the feature.

Support for Azure Cosmos DB – MongoDB Data Protection Controlled Availability

Cohesity now supports the protection of Cosmos DB – MongoDB databases at database-level by ingesting data into DataProtect for cloud in Azure. For more information, see [Azure Cosmos DB - MongoDB](#).

Note: This is a Controlled Availability feature. Contact your Cohesity account team to enable the feature.

Enhanced Azure MySQL Data Protection

You can now select the Azure MySQL instances based on tags during data protection. For more information, see [Backup Azure MySQL Database](#).

Also, Cohesity now validates the following during database credentials authentication:

- username/ password
- UMI ClientID for the Azure MySQL instance.

For more information, see [Protect Azure MySQL](#).

Support for Azure PostgreSQL Databases Protection Controlled Availability

Cohesity now supports the protection of Azure PostgreSQL Databases at database-level by ingesting data into DataProtect for cloud in Azure. For more information, see [Azure PostgreSQL](#).

Note: This is a Controlled Availability feature. Contact your Cohesity account team to enable the feature.

Support for Azure SQL Managed Instance Databases Protection Controlled Availability

Cohesity now supports the protection of Azure SQL Managed Instance Databases at database-level by ingesting data into DataProtect for cloud in Azure. For more information, see [Azure SQL Managed Instance](#).

Note: This is a Controlled Availability feature. Contact your Cohesity account team to enable the feature.

Support for Registering Azure at Tenant-level

You can now register Azure source with the Cohesity cluster at the tenant-level. With this capability, users can add the subscriptions which they want to add simultaneously, eliminating the need to register each subscription separately. For more information, see [Register an Azure Cloud Source at Tenant Level](#).

Exclude Disks of Azure VMs from Protection

All the disks of an Azure VM selected for protection are protected by default. Cohesity now allows you to exclude the disks of Azure VMs from protection. For more information, see [Add a Protection Group for Azure VM](#).

Support for Azure File-level Recovery

You can now perform file-level recovery of Azure VM on DataProtect for cloud in Azure. For more information, see [Azure Virtual Machines](#).

Note: This is an Early Access feature. Contact your Cohesity account team to enable the feature.

DataProtect for Cloud in GCP

Support for Firestore Data Protection Controlled Availability

You can now perform the backup and recovery of Firestore databases using DataProtect for cloud in GCP. For more information, see [Firestore](#).

Note: This is a Controlled Availability feature. Contact your Cohesity account team to enable the feature.

Support for BigQuery Data Protection

You can now perform the backup and recovery of BigQuery datasets using DataProtect for cloud in GCP. For more information, see [BigQuery](#).

Support for Spanner Data Protection Controlled Availability

You can now perform the backup and recovery of Spanner databases using DataProtect for cloud in GCP. For more information, see [Spanner](#).

Note: This is a Controlled Availability feature. Contact your Cohesity account team to enable the feature.

Support for Cloud SQL for AlloyDB PostgreSQL Data Protection Controlled Availability

You can now perform the backup and recovery of Cloud SQL for AlloyDB PostgreSQL databases using DataProtect for cloud in GCP. For more information, see [Cloud SQL for AlloyDB PostgreSQL](#).

Note: This is a Controlled Availability feature. Contact your Cohesity account team to enable the feature.

Support for Cloud SQL for SQL Server Data Protection Controlled Availability

You can now perform database-level backup and recovery of Cloud SQL for SQL Server using DataProtect for cloud in GCP. For more information, see [Cloud SQL for SQL Server](#).

Note: This is a Controlled Availability feature. Contact your Cohesity account team to enable the feature.

Support for Cloud SQL for MySQL Server Data Protection Controlled Availability

You can now perform database-level backup and recovery of Cloud SQL for MySQL Server using DataProtect for cloud in GCP. For more information, see [Cloud SQL for MySQL](#).

Note: This is a Controlled Availability feature. Contact your Cohesity account team to enable the feature.

Support for Cloud SQL for PostgreSQL Data Protection Controlled Availability

You can now perform database-level backup and recovery of Cloud SQL for PostgreSQL instances using DataProtect for cloud in GCP. For more information, see [Cloud SQL for PostgreSQL](#).

Note: This is a Controlled Availability feature. Contact your Cohesity account team to enable the feature.

Security

FortKnox Self-Managed

Network Bandwidth Throttling During Cluster Pairing

FortKnox Self-Managed now enables controlling the bandwidth usage when pairing a primary cluster with a vault cluster. You can use the new Data Transfer Throttle option to enable throttling and set the transfer speed in Megabits per second (Mbps). For more information, see [Pair Primary Cluster to Vault cluster](#).

Cluster Configuration

Boot Disk Requirements for Clusters

The boot disk requirement for new deployments of Virtual Edition clusters, DataProtect for Cloud clusters, and DataProtect for Cloud (legacy) clusters running version 7.3.1 is now 250 GB. This requirement applies only to newly deployed clusters and does not apply to clusters upgraded to version 7.3.1. For more information, see [Virtual Edition clusters](#), [DataProtect for Cloud clusters](#), and [DataProtect for Cloud \(legacy\) clusters](#).

Cohesity Feature Deprecation

There are no features that are deprecated in the Cohesity 7.3.1 release.

Upgrading to 7.3.1

Upgrade Paths

You can upgrade your Cohesity cluster from previous releases to 7.3.1. The following table provides details on supported upgrade paths.

Your Current Release	Upgrade Path to 7.3.1
<ul style="list-style-type: none"> • 7.3 • 7.2.2_u2 • 7.2.2_u1 • 7.2.2 • 7.2.1 • 7.2 • 7.1.2_u6 • 7.1.2_u4 • 7.1.2_u3 • 7.1.2_u2 • 7.1.2_u1 • 7.1.2 • 7.1.1 • 7.1 	7.3.1 directly

Note: Direct upgrades from 6.8.x to 7.3.1 are not supported. If your cluster is running any 6.8.x release (such as 6.8.1, 6.8.1_u1, or 6.8.2), a step upgrade is necessary. First, upgrade to 7.1.2_u6, and then proceed to 7.3.1.

Release Upgrade Policy

Policy	Example
Cohesity will support upgrades from the latest release of the prior LTS release branch, which includes all LTS designated releases within the branch, to the most recent release of the current LTS branch.	6.6.0d+ (LTS designated releases: 6.6.0d_u3, 6.6.0d_u4, 6.6.0d_u5, 6.6.0d_u6) to 6.8.2 LTS designated release will be supported.
Cohesity will not allow upgrades by default to any release that is older in time irrespective of the release branch. Exceptions are to be managed on a case-by-case basis.	6.5.1f_release-20210825_596bb917 is released after 6.6.0c_release-20210822_0d731348. Therefore, an upgrade from the 6.5.1f version to the 6.6.0c version is not supported. This policy is also applicable to patches. If you have upgraded your Cohesity cluster to a patch released after the LTS release, upgrading to that LTS release is not supported. However, you can upgrade to any LTS version released after the patch. For example, your Cohesity clusters were upgraded to 6.6.0d_u5 in July 2022. Cohesity released 6.8.1_u1 on Nov 2022 and the 6.6.0d-p32 patch on March 2023. If you've applied 6.6.0d-p32, you cannot upgrade to 6.8.1_u1. However, you can upgrade to the upcoming 6.8.1_u2 release.
Cohesity will support the release N-1 upgrade without an intermediate step. (N is defined as the current release branch).	7.2.x to 7.3.1 is supported. 7.3.1 is the current release branch.
Cohesity will support the release N-2 upgrade without an intermediate step. (N is defined as the current release branch).	7.1.x to 7.3.1 is supported. 7.3.1 is the current release branch.

Policy	Example
When a specific release is declared LTS, Cohesity will support upgrading from the open LTS releases to the new LTS release. This will include the three most recent releases on the LTS branch to the new LTS release.	6.8.1, 6.8.1_u1, 6.8.1_u2, 6.8.1_u3, 6.8.1_u4, 6.8.1_u5, 6.8.1_u6, 6.8.1_u7 to 6.8.2.

Upgrade Considerations

Note the following about upgrading the Cohesity cluster to 7.3.1:

- Cohesity does not support rolling back to older versions.
- To upgrade the Cohesity cluster from a version that is no longer supported, Cohesity recommends you to upgrade to any of the supported versions mentioned in the [Upgrade Paths](#), and then perform an upgrade to the latest release version. For information on Cohesity Products that have reached the end of support, see [Cohesity Products End of Support](#).
- See to review the list of features marked for deprecation for Cohesity 7.3.1 and later releases.
- Before performing the upgrade, ensure that the cluster data space and metadata space utilized is less than 85%. After the cluster upgrade, the Garbage Collection algorithms take 3 to 4 days to trigger. Hence, ensure that the cluster has enough space during this period. Space constraints may lead to backup and replication failures on the Cohesity cluster.
- If you are running remote adapter jobs and the cluster is upgraded, the jobs will be disrupted during the upgrade process. The jobs will be killed and restarted multiple times during the upgrade.
- Starting 6.8.2 and 7.1.2, the Cohesity indexing service is optimized to automatically identify and delete stale directories at regular intervals, which were created for indexing. After upgrading from a version without this optimization, the cluster indexing service will remove any stale directories identified, which may result in cluster-free space increase.
- Cohesity recommends upgrading the Cohesity Agent on Physical Servers and the Cohesity installed Agent on VMs to the latest release version of the Cohesity cluster.
- Cohesity recommends upgrading the Cohesity cluster first, followed by the Cohesity Agent. Upgrading an agent before the cluster is likely to impact the existing

functionality and disruptions may be observed due to agent being on a higher version than the cluster. Cohesity also recommends the agents be on the same, latest major version as the Cohesity cluster to get the latest security fixes and benefit from newer features.

- After upgrading to the latest version, if there is an IP subnet conflict, the **Enable Apps Management** toggle in **Marketplace > My Apps** is turned off. Navigate to **Settings > Summary** > click **Configure** and specify a different IP address in the **Configure Apps management network** field and then turn on the **Enable Apps Management** option.
- If you are on a Cohesity Cloud Edition cluster and using Marketplace Apps, then when you upgrade the Cohesity Cloud Edition cluster to 7.3.1, connectivity among the Marketplace Apps could be impacted* due to Flannel moving to etcd v3 APIs. It is recommended to pause any Marketplace Apps before the upgrade and resume them once the upgrade is complete.

***Impact:** Running workloads, Protection Groups, or scans related to the Marketplace App might see network disruption during the upgrade.

- For pure PXG clusters, before upgrading from version 6.6 to 6.8.1 or above, make sure that your cluster usage is below 95%. After the upgrade, there is a known issue where the available data space may decrease. Even clusters that are using only 88% of disk space before the upgrade have experienced out-of-space errors afterward, which can lead to backup failures. To avoid disruptions, Cohesity strongly recommends reducing disk usage well below 95% before starting the upgrade process.

Databases

- The addition of the new Postgres database could cause UI slowness until the ETL process completes. The bootstrap run of the ETL process pulls the entire data set to populate the database. The initial run has a slight performance impact. In the case of upgrades, data population happens in the post-upgrade step. Subsequent upgrades will not be affected.
- After upgrading to the latest version, [to display SAP HANA log backups](#) in the Cohesity cluster, you need to modify the existing registered source and set the `et-log-backup` source registration parameter to `true`. Only the log backups triggered after enabling `et-log-backup` will be shown on the Cohesity cluster.

Note: After modifying the source configuration (with `et-log-backup=true`), a full backup is mandatory. The initial full backup must be completed before any log backups appear on the Cohesity user interface.

- If you are upgrading to version 7.3.1 or later, you need to [update the existing SAP HANA source configuration](#) to enable auto-discovery and entity hierarchy. Set the --

entity-hierarchy source registration parameter to "true." After updating the source configuration (with --entity-hierarchy=true), a full backup is mandatory.

- For **SQL log backups**, if you are upgrading the cluster to version 7.2 and above, ensure that the Cohesity cluster bridge node VIPs on port 11117 are reachable from the SQL source. In case of the multitenant environment, ensure that the Hybrid Extender IPs on port 11117 are reachable from the SQL Source.

Note: The SQL log backup will fail post-upgrade if the above-mentioned port requirement is not satisfied.

- If you have upgraded your cluster to Cohesity 7.3.1 from an earlier version and already have an AWS account registered, you must add **new permissions** to protect the newly supported AWS workloads:
 - Amazon RDS (Ingest-based protection)
 - Amazon Redshift
 - Amazon DocumentDB
 - Amazon DynamoDB

Administration

- To generate a new SSH key after upgrading the Cluster, contact [Cohesity Support](#).
- Cohesity Support Engineers require a Support Channel token to remotely log into the Cluster using SSH for on-demand assistance. From your Cohesity cluster, you need to [copy the Support Channel token](#) and provide it while raising a request for on-demand assistance.
- The Secure Shell restricts access to the host commands or scripts. After you upgrade to 6.7 or later version, the secure shell might have the following impact on your existing Cohesity Data Cloud deployments:
 - Access to the bash shell using SSH will be no longer available to the support user account without authorization from Cohesity.
 - If you run custom scripts using SSH on your Cohesity cluster, the scripts may fail. In this case, Cohesity recommends the following:
 - Verify if there is an alternate method to use Cohesity CLI commands or REST API and update your scripts accordingly.
 - Verify if a corresponding Cohesity CLI command is available in the supported list of CLI commands; if so, use the supported CLI command. If the CLI command is not available in the supported list of commands, contact [Cohesity Support](#) to enable the CLI command.

- The private binary or tools running on the Cohesity nodes might fail. Contact [Cohesity Support](#) for options to install private binaries or tools.
- Sudo access is disabled by default. For support channel access, enable the sudo access. For more information, see [Enable or Disable Linux Sudo Access](#).
- If there is a source that is registered before the upgrade and assigned to an organization, then unassigning its root entity is not allowed. You can unassign the source if it is not assigned to an organization, and it will get assigned after the upgrade.

NoSQL and Hadoop

- To continue using Cohesity NoSQL & Hadoop services on the Cohesity cluster version 7.2.2, you must upgrade the NoSQL & Hadoop service to the 7.0.0 version available on Helios.
- If you are running NoSQL and Hadoop app, Cohesity recommends the following before upgrading the Cohesity cluster:
 - Pause the protection runs by navigating to **Data Protection > Protection** . From the Action Menu (:) of the required protection run, select **Pause Future Runs**.
 - Pause the NoSQL and Hadoop app by navigating to **Marketplace > My Apps** . From the Action Menu (:) of the app instance, select **Pause**.

After upgrading the Cohesity cluster to the latest version, contact your Cohesity account team to check if the upgraded Cohesity cluster requires a new NoSQL and Hadoop app. If it requires a new version of the app, you must upgrade to the latest version of the NoSQL and Hadoop app. Once the cluster upgrade is complete, resume the app, and then the protection runs.

Microsoft 365

- If you upgrade your Cohesity cluster to 6.8.2 or later versions and currently backing up Microsoft 365, ensure that you add the required [Microsoft Graph Permissions](#) related to MS Groups to your custom application to continue using your existing Protection Groups and protect your Microsoft 365 data.
- After upgrading to the 7.3.1 version, if you are replicating the Mailbox data to a remote Cohesity cluster, then ensure that you upgrade the remote Cohesity cluster to the 7.3.1 version.

Single Node Cluster Upgrades

Single node cluster upgrades must be run when the upgrade will have the least impact. During the upgrade of a single node cluster, the node is rebooted and during the reboot, the cluster is unable to process Protection Groups, recover tasks, or any other workflow.

Virtual Edition Deployment

The following are the requirements for the Virtual Edition deployment for 6.8 and later versions:

- small (8 TB) configuration supports Virtual Machines with 12 vCPUs, 32 GB of memory, and 64 GB virtual disk to store the operating system.
- large (16 TB) configuration supports Virtual Machines with 24 vCPUs, 64 GB of memory, and 64 GB virtual disk to store the operating system.

For more information, see [Virtual Edition for VMware Setup Guide](#) and [Virtual Edition for Clustered VMware Setup Guide](#).

Replication Environments

- If the cluster replication is configured, verify that the network connectivity is functioning properly during the upgrade to ensure the cluster replication relationship is successfully upgraded to use AES-256-GCM for encryption.
- In a replication setup, when you upgrade your Cohesity cluster to Cohesity 6.6 or later and you use the default System Admin password, you will be prompted to change the password. After changing the password, you must update the new password on the replication partner cluster.
- For information about using replication between Cohesity clusters running different versions, see [Replication Compatibility](#).

Cohesity Cluster Patch Upgrades

- Ensure there are no cluster operations or patch updates in progress. A cluster operation is a task on a Cohesity cluster such as add or remove a node, and cluster upgrade.
- When you create a node and connect it to a Cohesity cluster, the service patch updates are done automatically but the Base OS patch is not applied. To apply Base OS patch update on the newly added node, you can refer to the link under the **Instructions** column in the [Download portal](#).

Note: Cohesity recommends that the product patch and the Base OS patch version should be the same.

Patch Upgrades in DoD Mode

If your Cohesity cluster is running on DoD mode, then you should first upgrade to 6.8.1_u2 or later and then apply a cluster patch update. For more information on DoD mode, see [Use Cohesity in DoD Mode](#).

Supported Sources for Hybrid Extender Based Organizations

From 6.6 onwards, Cohesity Platform in a multi-tenant environment displays only the sources that the Organization (tenant) can register and protect. As a prerequisite, Hybrid Extender should be enabled for Organizations (tenant).

For a list of supported sources and workflows, see [Supported Multitenancy Workflows](#).

FortKnox

After upgrading to the 7.3 version, cold vaults created in an AWS Region use Amazon S3-Glacier Deep Archive (GDA) and require a minimum retention period of 180 days. In earlier releases (prior to 7.3), cold vaults were created on Amazon S3-Glacier Flexible Retrieval (FR). Recovery starts up to 12 hours after initiation, due to the data hydration process required for data access from cold vaults.

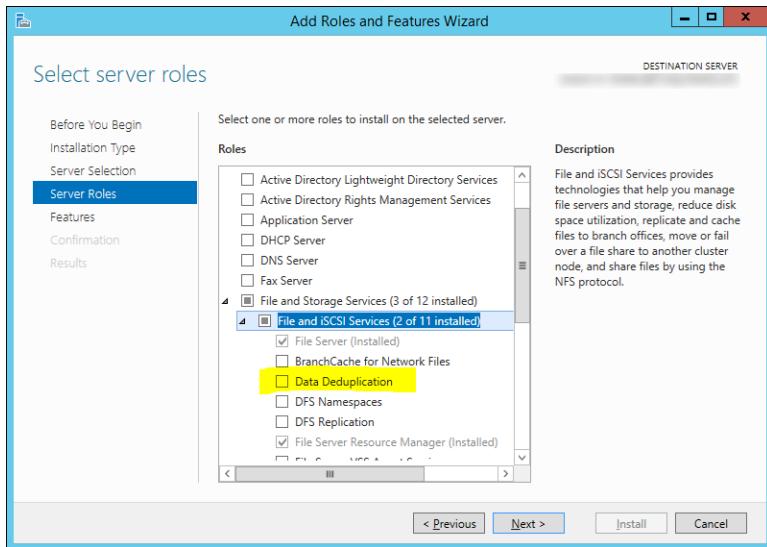
Considerations

Review these considerations before you install the software for the first time or upgrade from a previous version.

Data Protection

Instant Volume Mount

Review the following considerations:


- When recovering a file or instantly mounting a volume from a Windows VM or Physical Server Backup Source that has Windows deduplication installed and enabled for one or more volumes, you must choose a target machine that also has Windows deduplication installed (it does not have to be enabled for any volume). (However, this rule does not apply to Nutanix AHV VMs. If AHV VMs are enabled with Windows deduplication, the only supported recovery option is full VM recovery.)

If the target does not have Windows deduplication installed:

- File level recovery will fail with the error message: "Windows Data Deduplication role is not installed on the target machine. Retry recovery after installing the Windows Data Deduplication role on the target machine."
- Instant volume mounting will fail with the error message: "Windows Data Deduplication role is not installed on the target machine. Retry recovery after installing the Windows Data Deduplication role on the target machine."

To determine if Windows deduplication is installed on the Source or target machine, follow the steps given below:

1. Open **Server Manager**.
2. Select **Roles and Features > File and Storage Services > File and iSCSI Services**.
3. Select the **Data Deduplication** check box, if necessary.
4. Click **Next** until the **Install** button is enabled and then click **Install**.

- Instant Volume Mount (IVM) restore of ReFS volumes backed up using Windows physical block-based jobs cannot be restored to an alternate Windows server running a lower version of ReFS.
- When mounting volumes on a Linux physical Server, the loop devices present on the Server are used for mounting. Therefore, the number of volumes that can be mounted depends on free loop device availability. By default, the number of available loop devices is 8, but this number can be customized. If the number of configured loop devices is the default of 8, up to eight volumes can be mounted. In this example, if an attempt to mount more than 8 volumes occurs, the mounting of all the volumes after the 8th volume fails and errors are reported.
- Tearing down a cloned database or instant volume mount deletes the mounted volumes. Any new or modified data on these volumes will be deleted along with the volumes, so ensure you back up any important data before teardown.
- Review the following considerations when performing instant volume mount to Hyper-V VMs:
 - Only Windows VMs are supported.
 - Dynamic Disks (LDM and LVM) are not supported.
 - The Bring Disks Online option requires the following:

- VM must be part of Active Directory, the VM and the Hyper-V host must be in the same AD.
- Users must execute "winrm quickconfig" to enable winrm on the target VM and remote powershell must be enabled from Hyper-V host to VM.
- Instant volume mount and file level recovery from Gen 1 to Gen 2 type VMs is not supported.
- If SCVMM is unregistered from the Cohesity cluster, ensure you tear down all instant volume mounts. Not tearing them down can prevent the VM from being backed up when the source is registered with a different Cohesity cluster.
- Instant volume mounting Hyper-V 2012 R2 VMs without a SCSI controller is not supported. This is because Hyper-V disallows dynamically adding a SCSI controller, which is required to add the virtual disks.
- On 2012 R2 VMs, if an instant volume mount disk is attached during a Protection Group, that snapshot cannot be application-consistent. If this occurs, the event viewer may contain a VSS-catastrophic error or similar message.
- Instant Volume Mount for NetApp stub file is not supported.
- You cannot instantly mount a volume from a VM to a physical server, and vice-versa.

File and Object Services

NFS

Review the following considerations:

- NFS mount names and names of files contained in the mount support ASCII and UTF-8 character codes only.
- When mounting a View, the `-o atime` option for the `mount` command improves the performance marginally. For performance reasons even if you specify the `atime` option, the Cohesity cluster does not record the access time. The `-o noatime` option is always in effect and the Cohesity cluster only records the access time when files are created or modified.
- When data is deleted from a view, it may take up to a day for the disk space to become available again and visible from utilities such as `df`.
- To register an Oracle RAC or a RAC node as physical server, "host" command must be executed on each of the nodes of that RAC.
- Cohesity recommends using a Linux client with kernel version 4.x or higher.
- NFSv4.1 considerations:
 - If you use a single client machine to mount an NFS4.1 view with different node IPs, all mount requests will go to a single node on the Cohesity node and might result in inefficient workload balancing.

- **Workaround:** If you want to mount a single NFSv4.1 View using different node IPs, Cohesity recommends to use multiple clients for better performance. However, you can use each of these NFS clients to mount Views from different Cohesity clusters.
- LOCKT operations are not supported.

SMB

Review the following considerations:

- Keeping with the industry standard of change notification for SMB shares, recursive change notifications are not sent due to their effect on process load and network traffic.
- Filenames that contain UTF-16 character codes ranging from U+D800 to U+DFFF are not allowed in Cohesity SMB shares.
- For Linux clients that are members of AD, using "client max protocol = SMB2" in the [global] section of /etc/samba/smb.conf is not supported. Use "client max protocol = SMB3".
- Cohesity SMB shares do not support alternate data streams.
- You can add Cohesity SMB shares as a [Microsoft Distributed File System \(DFS\)](#) target, but note that SmartFiles does not support any additional features or functionalities provided by [Microsoft DFS](#).
- Windows behavior prevents Cohesity SMB shares from being automatically discoverable. Use the `net view` command to probe the cluster explicitly using `\\` or `\\` or `\\`.

SMB Multichannel

Review the following consideration:

The option to advertise multiple IP addresses on the cluster is not supported.

S3

Review the following considerations:

- You must use one of the following accounts to create an S3 View:
 - A local Cohesity user.
 - An Active Directory user that was explicitly added to the Cohesity cluster and assigned a role. This user does not rely on an AD group for access to the Cohesity cluster.

Important:

You cannot create an S3 View using one of the following accounts:

- An AD user that has Cohesity cluster access through an Active Directory group only
- An SSO user
- A Helios user

- To create a SmartFiles S3 View in a multi-tenant environment, log in to the Cohesity cluster as an Organization user. If you create the S3 View while impersonating an organization, the Service Provider administrator becomes the owner of the S3 View.
- Access Control Lists (ACLs) can be set on a bucket using the AWS CLI.
- You cannot use NFS to mount newly created S3 Views. However, if there are existing S3 Views that were configured to use NFS, you can mount such S3 Views using NFS.
- The maximum number of versions allowed per S3 object is 500,000.
- Cohesity recommends excluding any unsupported header(s) from your requests. By doing so, you can prevent any potential unintended consequences that may arise from using unsupported headers.

Indexing and File Recovery

Review the following considerations:

- The Indexing Helper Service is not supported on a Cohesity cluster that is running on DoD mode. When DoD mode is not enabled, both the proxy and the host machines are available and there is improved resiliency for mounting of volumes. This improved resiliency is lost when the entire dependency is on the host node to perform the volume mounts.
- The Cohesity cluster attempts to index all files and folders to a drive on both Windows and Linux systems. If the Cohesity cluster is unable to find mount point information about files or directories, it indexes and displays these files and directories in the `lvol_N` directory, where `N` is a unique number such as 1.

On Windows systems, if the Cohesity cluster finds the mount point information about files and directories, it indexes and displays these files and directories with a drive letter such as `C:`.

Linux LVM indexing supports the following LVM types only: Linear, Striped, Mirrored, Mirrored + Striped, Thin. On Linux systems, how files and directories are indexed and displayed is dependent on the conditions specified in the following table.

Server Type	Volume Type	
Linux Virtual Machine	Simple Volume	<p>The Cohesity cluster detects mount points for entries in the <code>/etc/fstab</code> file with the following formats:</p> <pre data-bbox="605 473 1396 502">UUID=ccd1d599-e68e-4b88-ba9b-6f75b63f1bdc /mnt ext4 auto 0</pre> <pre data-bbox="605 530 1396 593">UUID="ccd1d599-e68e-4b88-ba9b-6f75b63f1bdc" /mnt ext4 auto 0</pre> <p>If the Cohesity cluster can detect a mount point, it indexes and displays files and directories in the volume with the mount point that was specified in the <code>/etc/fstab</code> file. For these example entries, files and directories are indexed with the <code>/mnt</code> mount path, such as <code>/mnt/example/test.txt</code>.</p> <p>If the Cohesity cluster cannot detect a mount point, the Cohesity cluster indexes the files and directories into a <code>lvol_N</code> directory. For example, the <code>/mnt/example/test.txt</code> file is indexed as <code>/lvol_1/example/test.txt</code>.</p>
Linux Virtual Machine	LVM Volume	<p>The Cohesity cluster detects mount points for entries in the <code>/etc/fstab</code> file with the following formats:</p> <pre data-bbox="605 1022 1396 1051">UUID=ccd1d599-e68e-4b88-ba9b-6f75b63f1bdc /mnt ext4 auto 0</pre> <pre data-bbox="605 1079 1396 1108">/dev/mapper/VG1-root /mnt ext4 defaults 1 1</pre> <pre data-bbox="605 1136 1396 1165">/dev/VG1/root /mnt ext4 defaults 1 1</pre> <p>If the Cohesity cluster can detect a mount point, it indexes and displays files and directories in the volume with the mount point specified in the <code>/etc/fstab</code> file. For these example entries, files and directories are indexed with the <code>/mnt</code> mount path, such as <code>/mnt/example/test.txt</code>.</p> <p>If the Cohesity cluster cannot detect a mount point, the Cohesity cluster indexes the files and directories into a <code>lvol_N</code> directory. For example, the <code>/mnt/example/test.txt</code> file is indexed as <code>/lvol_1/example/test.txt</code>.</p>
Linux Physical	LVM Volume	<p>The Cohesity agent can only return mount data when the volume is mounted on the Linux physical Server. If the volume is mounted, the Cohesity cluster indexes and displays files and directories in the volume with the mount point such as <code>/mnt/example/test.txt</code>.</p> <p>If the volume is not mounted, the Cohesity cluster indexes the files and directories into a <code>lvol_N</code> directory. For example, the <code>/mnt/example/test.txt</code> file is indexed as <code>/lvol_1/example/test.txt</code>.</p>

- Cohesity supports recovering files/folders from NTFS (Windows VMs) to Windows VMs, and from Linux VMs to Linux VMs only.
- **Error:** When recovering files or folders, the virtual disks are part of the target VM. These virtual disks are attached as SCSI disks that can be any of the supported adapter types: LSI Logic Parallel, LSI Logic SAS or VMware Paravirtual. During this step, you may encounter the following error: "Disk adapter with required slots - <n> is not available. Try creating a new adapter". Here, <n> is the number of virtual disks that are being attached. This can occur if the VM's disk adapter does not have the required number of slots (one SCSI adapter can support 15 virtual disks).

Solution: Attempt the operation *after* creating a new SCSI adapter. Additionally, the number of virtual disks where files and folders are being recovered from is limited to 15 at a time. Remove some files (or folders) and retry the recovery.

- For RHEL7, if Open VM Tools is installed instead of VMware Tools, TMPDIR may not point to /tmp. When recovering to location "/tmp/<SOME_DIRECTORY>", files may be recovered to a different location.

Example: If the recovery location is '/tmp/DIR1', files are recovered to a different location, such as '/tmp/systemd-private-c74aea179e9a43c789a19306d880274f-vmtoolsd.service-9GhOBD/tmp/DIR1'

- When unzipping a zip file that was created by downloading files and folders from an archived Snapshot, if the file or folder name has encoded characters, unzip the zip file using the corresponding encoding. For example if a file name in the zip file has a UTF-8 character, unzip the file using the following command:

```
unzip -O UTF-8 Download-Files_Sep_20_2018_3-17pm_3090.zip
```

- For Linux VMs, Cohesity supports file recovery from LVM volumes. One LVM volume can consume more than one loop back device, so Linux VMs may support fewer than 8 volumes when configured with the default number of loop devices.
- When recovering a Linux file, the Cohesity Linux Agent runs the following commands in sudo:
 - mount
 - umount
 - findmnt
 - timeout
 - blkid
 - lsof
 - ls
 - rsync
 - losetup
 - dmsetup

- lvs
- vgs
- lvcreate
- lvremove
- lvchange

- For Linux Logical Volume Manager (LVM), if all the disks for a volume group are not found by the Cohesity cluster, the Cohesity cluster will not process that volume group. As a result of that, no volumes of this volume group will be recognized or indexed by the Cohesity cluster.
- Indexing, file recovery and browsing files and folders on VMs are not supported for drives with disk-level encryption (such as BitLocker). On physical Servers, however, these workflows are supported.
- Encrypted VMs are not indexed.
- If a Windows VM includes volumes created from a storage pool (Microsoft Storage spaces), VMDK recovery, IVM, and FLR are not supported.
- Cohesity does not support indexing of Microsoft Storage Spaces.
- File level recovery for VMware ESXi environments does not support RAID-5 volumes on dynamic disks. Simple, striped, spanned and mirrored volumes on dynamic disks are supported.
- A VMware Tools service restart during a Recovery operation may disrupt Recovery. If the VMware Tools service restarts during a Recovery operation, the following error message is returned: The guest operations agent could not be contacted. After multiple retries to contact the guest operations agent, an error message stating that it started the copy but it could not get the status is returned. Go to the recovery location to verify whether the operation succeeded.
- Recovering files to a VM where vMotion is in process is not supported.
- File recovery is not supported for ReFS volumes in these environments: physical, VMware, Hyper-V and AHV.
- Encrypted folders that have been renamed or deleted cannot be recovered.
- Recovering files/folders with names longer than 200 characters may return an error. This is due to Windows behavior when handling files/folders with long names.
- After making system configuration changes to a Windows 8 or Windows 2012 System VM, such as renaming an existing drive letter or adding a new disk, these changes may not immediately take effect due to a Windows registry refresh issue. To force the drive letters to be updated on the VM, reboot the system in the VM. This issue affects how files are indexed by the Cohesity cluster and displayed while browsing the contents of the VM.

- Considerations when recovering to physical servers that run:
 - Windows 2012 or later - None
 - Windows 2008 R2 - Up to 2040 GB. Larger recoveries not supported.

If the OS does not support your recovery, you must recover to an alternate physical server running Windows 2012 Server or later, or use downloads.

- File-based recovery to Windows VMs does not support hardlinks and alternate data streams.
- Downloading files and folders from tape archive locations is not supported.
- Recovering files and folders from VMs to physical servers and from physical servers to VMs is not supported.
- The downloadable zip file can contain regular files and folders only; symlinks are not supported. When unzipping the downloaded files/folders, use a zip utility that supports the ZIP64 format.
- Recovering files to Linux VMs is not supported in the following cases:
 - When run as a non-root user that does not have sudo access
 - If `ALL=(ALL) NOPASSWD:ALL` is not set for the recover user in the `/etc/sudoers` file
 - If requiretty is not disabled for the recover user in the `/etc/sudoers` file

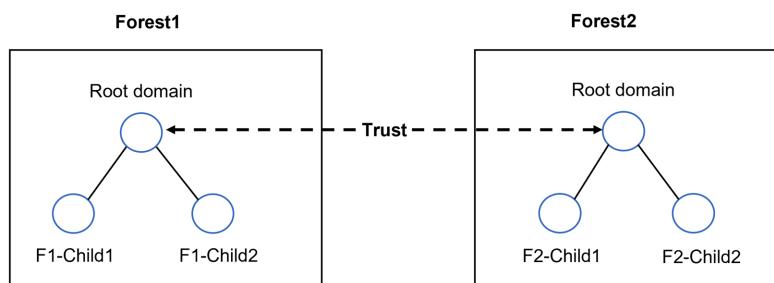
Recovering to Linux VMs requires requiretty to be disabled for the recover user in the `/etc/sudoers` file, otherwise recovery will fail. To disable requiretty for a recover userAdd the following line in the `/etc/sudoers` file, where `<USERNAME>` is the name of the recover user with sudo access: `Defaults:<USERNAME> !requiretty`

- The recovery directory path length is greater than 4096 characters.
- There is not enough space in `/tmp` for Cohesity to push `linux_agent`.

Replication and Archival

Review the following considerations:

- Backups that are taken on the Full (No CBT) schedule are not currently archived by the Cohesity cluster. Other full backups (first Protection Group run, failed CBT) can be archived because they are not initiated by the Full backup schedule.
- In production environments, Cohesity recommends not replicating from one single node Cohesity cluster Virtual Edition to another single node Cohesity cluster Virtual Edition. Cohesity recommends replicating from Cohesity cluster Virtual Editions to Cohesity clusters running directly on hardware.


- If you have a Protection Group that is capturing and replicating Snapshots multiple times a day, Cohesity recommends configuring the replication schedule to copy Snapshots daily instead of replicating Snapshots after each protection run. If the replication schedule is too frequent, the replication may lag behind the capturing of Snapshots resulting in a backlog of replication tasks.
- If Snapshots of a VM are replicated to a remote Cluster and the VM is renamed in the vCenter Server, the Cohesity UI on the remote Cluster displays the original VM name in the protection run Details page. However, you can search for new VM name while recovering or cloning and the search results displays the new VM name. Replication is not affected by this issue.

Access Management

Active Directory

Review the following considerations:

- Due to Windows client authentication cache behavior, after you add or remove a Cohesity cluster from an Active Directory domain, clients must log out and log in again to access the Cohesity cluster.
- The Cohesity cluster is added as one or more computer entities with no back-end RPC management API implementation.
- Users from trusted domains with trust type External cannot access Cohesity SMB shares.
- Active Directory lookup to external (non-transitive) trust via LDAP referral setup in AD is not supported.
- Active Directory lookup to a non-Windows-AD trust (Kerberos v5 Realms) is not supported.
- Consider the following trusted domains and forests.

If the cluster is joined to domain F1-Child1, then users from Forest2 or any of its child domains are not authenticated/allowed-access to the cluster. Users from all child domains within Forest1 can authenticate via NTLM.

If the cluster is joined to domain Forest1, then users from all child domains of Forest1 and users from the Forest2 domain only can access the cluster via NTLM. Users from child domains of Forest2 cannot access the cluster via NTLM.

Multitenancy

Review the following considerations:

Organizations (Tenants)

- If a VMware vCloud Director (vCD) source sub-object is assigned to a tenant, the recovery of VMs and vApps to an alternate location will fail in 6.2 release. When an entire vCD is registered within a tenant, then recovery to both original location and alternate location is supported.
- Enabling multitenancy for a cluster cannot be undone. You cannot revert the cluster to a single tenancy state.
- If a single-tenant cluster is configured with remote access to a multitenant-enabled cluster, the Organizations page will not be available when accessing the multitenant cluster. The workaround is to enable multitenancy on the single tenancy cluster (it is not necessary to add any organizations.)

Hybrid Extender VM

Review the following considerations:

- Hybrid extender supports source registration and backup only for Windows and Linux physical sources. AIX, HPUX, Solaris physical sources are not supported with hybrid extender.
- Currently, Cohesity does not support the auto-upgrade of the Hybrid Extender. Therefore, you must upgrade the Hybrid Extender after upgrading the Cohesity cluster from one major release to another major release. For example, if you are upgrading the Cohesity cluster from 6.5.1 to 6.6, use the Hybrid Extender version provided with 6.6.
- When you're upgrading to maintenance releases such as 6.5.1e, you need not upgrade the Hybrid Extender. However, Cohesity recommends that the version of Cohesity cluster and the Hybrid Extender to be same.
- If a tenant deploys multiple Hybrid Extender VMs, SMB and NFS sessions do not failover to the next available Hybrid Extender VM. Cohesity depends on the hypervisor that is hosting the Hybrid Extender VM to ensure high availability. If the hypervisor does not support high availability, I/O requests fail.
- Hybrid Extender does not support the following features:
 - S3
 - SMB Multichannel

- Keystone
- Kerberos client for NFS
- SSO
- NFS authentication

Fixed Issues

The **Fixed Issues** page provides a list of issues fixed in the 7.3.1 release and its associated patch and update releases. Each fixed issue contains an issue ID and a brief description.

On the [Fixed Issues](#) page, select one of the following options to view the fixed issues:

- **Filter By Version**—Select a version to filter the fixed issues by a specific version.
- **Search By Issue ID**—Enter an issue ID to search for a specific fixed issue.
Example: ENG-225665 or 225665.

Security Fixes

Cohesity CVE patch releases utilize the Base OS patch within the software bundle to hold the CVE and related security fixes. BaseOS patch may contain critical CVE fixes, kernel updates, driver updates, and optionally bug fixes for other user-mode packages. Customers can review the fixes and determine if they want to skip a base OS patch and apply just software patches. All patches are cumulative if a patch is skipped and applied using a later patch release.

The following table lists the Common Vulnerabilities and Exposures (CVEs) fixed in the 7.3.1 release:

CVE Name	Details	Threat Severity	CVSS Base Score
CVE-2025-9900	Libtiff write-what-where via crafted TIFF height	High	8.8
CVE-2025-9566	Podman kube play symlink overwrite	High	8.1
CVE-2025-8176	LibTIFF get_histogram use-after-free	High	7.8
CVE-2025-6395	GnuTLS NULL pointer dereference in cipher suite selection	Medium	6.5

CVE Name	Details	Threat Severity	CVSS Base Score
CVE-2025-62231	X.Org Xkb unsigned short overflow	High	7.3
CVE-2025-62230	X.Org Xkb use-after-free during resource cleanup	High	7.3
CVE-2025-62229	X.Org X11 Present extension dangling pointer (use-after-free)	High	7.3
CVE-2025-58364	CUPS unsafe deserialization → libcups null dereference (DoS)	Medium	6.5
CVE-2025-58060	CUPS auth bypass when AuthType≠Basic	High	8
CVE-2025-53906	Vim zip.vim path traversal	Medium	4.1
CVE-2025-53905	Vim tar.vim path traversal	Medium	4.1
CVE-2025-5318	libssh SFTP handle out-of-bounds read	High	8.1
CVE-2025-53066	libssh incorrect pointer comparison	High	7.5
CVE-2025-53057	libssh channel race condition	High	7.5
CVE-2025-4945	OpenSSL memory leak in SSL handshake	Medium	5.9
CVE-2025-48964	OpenSSL timing side-channel in RSA	Medium	4.7
CVE-2025-43368	Kernel netfilter use-after-free	High	7.8
CVE-2025-43356	Kernel io_uring race condition	High	7.8
CVE-2025-43343	Kernel futex priority inversion	Medium	6.8
CVE-2025-43342	Kernel BPF verifier integer overflow	High	7.8
CVE-2025-43272	Kernel memory corruption in ext4	High	7.8
CVE-2025-41244	Kernel race in posix timers	High	7.4
CVE-2025-39849	Kernel memory corruption in netfilter	High	7.8

CVE Name	Details	Threat Severity	CVSS Base Score
CVE-2025-39841	Kernel race condition in io_uring	High	7.8
CVE-2025-39825	Kernel futex priority inversion flaw	Medium	6.8
CVE-2025-39819	Kernel BPF verifier integer overflow	High	7.8
CVE-2025-39817	Kernel ext4 memory corruption	High	7.8
CVE-2025-39761	Kernel race in posix timers	High	7.4
CVE-2025-39757	Kernel netfilter use-after-free	High	7.8
CVE-2025-39751	Kernel io_uring race condition	High	7.8
CVE-2025-39730	Kernel futex priority inversion flaw	Medium	6.8
CVE-2025-39718	Kernel BPF verifier integer overflow	High	7.8
CVE-2025-39702	Kernel ext4 memory corruption	High	7.8
CVE-2025-39698	Kernel race in posix timers	High	7.4
CVE-2025-39694	Kernel netfilter use-after-free	High	7.8
CVE-2025-39682	Kernel io_uring race condition	High	7.8
CVE-2025-38718	Kernel futex priority inversion flaw	Medium	6.8
CVE-2025-38614	Kernel BPF verifier integer overflow	High	7.8
CVE-2025-38571	Kernel ext4 memory corruption	High	7.8
CVE-2025-38566	Kernel race in posix timers	High	7.4
CVE-2025-38556	Kernel netfilter use-after-free	High	7.8
CVE-2025-38550	Kernel io_uring race condition	High	7.8
CVE-2025-38527	Kernel futex priority inversion flaw	Medium	6.8

CVE Name	Details	Threat Severity	CVSS Base Score
CVE-2025-38498	Kernel memory corruption in netfilter	High	7.8
CVE-2025-38472	Kernel race condition in io_uring	High	7.8
CVE-2025-38449	Kernel futex priority inversion flaw	Medium	6.8
CVE-2025-38392	Kernel BPF verifier integer overflow	High	7.8
CVE-2025-38352	Kernel posix timers race condition	High	7.4
CVE-2025-38351	Kernel netfilter use-after-free	High	7.8
CVE-2025-38332	Kernel io_uring race condition	High	7.8
CVE-2025-37810	Kernel futex priority inversion flaw	Medium	6.8
CVE-2025-37803	Kernel BPF verifier integer overflow	High	7.8
CVE-2025-32990	Kernel ext4 memory corruption	High	7.8
CVE-2025-32989	Kernel race in posix timers	High	7.4
CVE-2025-32988	Kernel netfilter use-after-free	High	7.8
CVE-2025-22097	Kernel io_uring race condition	High	7.8
CVE-2025-22026	Kernel futex priority inversion flaw	Medium	6.8
CVE-2025-11021	Kernel BPF verifier integer overflow	High	7.8
CVE-2024-50301	OpenSSL memory leak in SSL handshake	Medium	5.9
CVE-2024-36357	OpenSSL timing side-channel in RSA	Medium	4.7
CVE-2023-53494	Vim tar.vim path traversal	Medium	4.1
CVE-2023-53373	Vim zip.vim path traversal	Medium	4.1
CVE-2023-53331	libssh SFTP handle out-of-bounds read	High	8.1

CVE Name	Details	Threat Severity	CVSS Base Score
CVE-2023-53125	libssh incorrect pointer comparison	High	7.5
CVE-2023-49083	libssh channel race condition	High	7.5
CVE-2022-50367	OpenSSL memory leak in SSL handshake	Medium	5.9
CVE-2022-50087	OpenSSL timing side-channel in RSA	Medium	4.7

Cohesity Support

Reach Cohesity Support

There are several ways to create a Cohesity support case.

- Go to [Cohesity Support](#), to search in our knowledge base; or contact us by phone - United States and Canada: 1-855-9CO-HESI (926-4374), option 2.
- Log in to the [Cohesity Support Portal](#) to create a new case.
- Click the (?) icon on the Cohesity UI and select Support Portal.

Support/Service Assistance

First, contact the Service Provider that you have contracted for service and support. If you work directly with Cohesity and have a product warranty/entitlement, repair pricing, or technical support-related question, see your options below:

- To find solutions to your product issues or for suggestions or best practices, visit the [Cohesity Knowledge Base](#).
- Log in to the [Cohesity Support Portal](#) to create a new case.
- To monitor your open cases, log in to the portal and click the **Cases** tab on the home page. This page should have all the case statuses and updates. You can also view individual case status.

Cohesity Software Running on Partner Hardware

For Cohesity software running on qualified third-party hardware, the following support workflow applies:

1. The customer may contact Cohesity Support first if the issue cannot be determined as a hardware issue.

Note: Cohesity cannot process hardware replacement requests for partner hardware.

2. Cohesity Support triages the issue. If it is a software issue, Cohesity Support continues to work on it.
3. If it is a hardware/firmware issue or is suspected to be a hardware/firmware issue, Cohesity provides information about the issue to the customer and requests that the customer open a support ticket with the appropriate partner.
4. If needed, Cohesity Support can join a three-way call with the partner and the customer.
5. The customer informs Cohesity Support on the progress of the partner's case.

Documentation Feedback

We encourage you to provide feedback so that we can improve our documentation. [Click here](#) to send us your feedback!

Ensure that you provide the following details in your email:

- Document name
- Topic name
- Page number

