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Preface

What MX does

MX is a structural equation modeling package, but it is flexible enough to fit a variety of
other mathematical models.  At its heart is a matrix algebra processor, which can be used
by itself.  There are many built-in fit functions to enable structural equation modeling and
other experiments in matrix algebra and statistical modeling.  It offers the fitting functions
found in commercial software such as LISREL, LISCOMP, EQS, SEPATH, AMOS and
CALIS, including  facilities for maximum likelihood estimation of parameters from missing
data structures, under normal theory.  Complex ‘nonstandard’ models are easy to specify.
For further general applicability, it allows the user to define their own fit functions, and
optimization may be performed subject to linear and nonlinear equality or boundary
constraints.

How to Read this Manual

The bad news is that this manual is quite long; the good news is that you don't need to read
it all!  Chapter 1 contains an introduction to multivariate path modeling.  The "how to" part
of the manual starts in Chapter 3, in which general syntax conventions and job structure are
laid out, followed by description of the commands necessary to read data.  Chapter 4 deals
with the heart of MX: how to define matrices and matrix algebra formulae for model-fitting,
and ways of estimating and constraining parameters.  Methods of changing the default
fit-function, of decreasing and increasing the quantity (and quality) of the output, and for
fitting sub-models efficiently, are described in Chapter 5.  The last chapter supplies and
briefly describes a number of example scripts.  The Appendices describe the use of MX

under different operating systems, error codes, introductory matrix algebra and reciprocal
causation.

Origin

The development of MX owes much to LISREL and I acknowledge the pioneering effort put
in by Karl Jöreskog & Dag Sörbom.  There are many who have supported and encouraged
this effort in many different ways.  I thank them all, and especially Lindon Eaves, Ken
Kendler and John Hewitt since they also provided grant support1, and David Fulker for
allowing modification of his notes on matrix algebra to be supplied as an appendix to this
manual.  Jack McArdle and Steve Boker provided excellent path diagram drawing software
(RAMPATH) which was the basis for the development of MX Graph, Luther Atkinson
suggested the binary file save option; Buz Brown programmed the Rectangular file read,
Karen Kenny and John Fritz organized the interactive website; these efforts were part of the
excellent software, hardware and consultancy support supplied by University Computing
Services at the Medical College of Virginia, Virginia Commonwealth University.  The MX
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team includes my colleagues Drs. Steve Boker, Hermine Maes, Mr. Gary Xie and Wayne
Hadady.

What’s New in 1999

New in this edition is the MX Graphical interface documentation.  Chapter 2 describes how
to take advantage of this software which is available for the MS Windows (Win3.x/98/NT)
platform.  Jobs built with diagrams or scripts can be executed on a Unix server to get results
more quickly for CPU intensive modeling.

Several features have been added to enable modeling ordinal data.  P ? is the ordinal file
command, which operates like a rectangular file read except that it expects ordinal data with
a lowest category of zero.  Likelihoods are then computed using numerical integration
software provided by Genz (1992).  The same software is used in the latest function which
returns all of the cell proportions for a covariance matrix and set of thresholds.

A new frequency command (described on p ?) supplements the weight command by
allowing different cases to have different weights.  This feature allows data-weighting
approaches to be implemented.

A number of new features improve the quantity and quality of statistical and matrix output.
First, the difference between a supermodel and a submodel can be computed automatically
if the option Issat is used to identify a supermodel, or if option sat is used to enter the fit of
a supermodel against which new models are to be compared.  Matrix output can be
formatted with any legal Fortran format, and matrices written can be appended to existing
files.  This latter feature is useful for simulation work because the results of several model-
fitting runs can be written to the same file for later analysis.

Several new examples have been added, both to the text and to the MX website.  It is a
pleasure to continue to offer MX free of charge, which allows rapid fixing of bugs and
immediate release of new features.

Internet Support

MX is public domain; it is available from the internet at http://griffin.vcu.edu/mx/.  With
a suitable browser, you can obtain the program, documentation and examples, send
comments, see the latest version available for your platform, and so on.  E-mail bug reports,
requests for further information, and most important your comments and suggestions for
improvements to neale@psycho.psi.vcu.edu - it is hard to overemphasize the importance
of constructive criticism. You can also grab the code for a variety of operating systems via
anonymous ftp to opal.vcu.edu.  Please have the courtesy (and self-interest) to E-mail me
so that I can keep you informed of updates, bug reports etc.

A graphical interface for structural equation modeling, “MX Graph” is currently in alpha-test
to MX that will relieve the user of getting to grips with the details of scripts.  Even with this
interface, knowledge of the script language is necessary to use advanced features and
methods.  The good news is that a much deeper understanding of modeling can come from
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this activity.  We are in the process of revising the script language to enhance its flexibility
and readability.

Technical Support

A number of users have been most helpful finding errors in the documentation or software
or both, and for suggesting new features that would make MX easier to use.  Thank you!  I
hope that all users will forward any comments, bug reports, or wish-lists to me.  My current
address is:

address Department of Psychiatry
Virginia Institute for Psychiatric and Behavioral Genetics
Box 126 MCV
Richmond VA 23298-0126, USA

phone 804 828 3369
fax 804 828 1471
E-mail neale@psycho.psi.vcu.edu (internet)

and my order of preference for communication is E-mail, fax, phone and snail mail.  When
reporting problems, E-mail is especially useful to include the problem file.

To find Go to
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1 Introduction  to
Structural Equation Modeling
What you will find in this chapter

# Guidelines for building your own scripts
# A brief introduction to the capabilities of MX.
# Three different ways to implement a structural equation model in MX

1.1 Guidelines for good Script Style

Programming, like much of life, requires compromises.  We must balance the time taken to
do things against their value.  Now, there are both short-term considerations (“how do I get
this working as soon as possible?”) and long-term ones (“how can I save time in what I’m
going to be doing next week?”).  This usually results in making a choice of method that is
based on the following factors:

# Time taken to get the script working properly
# Clarity, which can affect time to debug and modify
# Efficiency of the script - how fast it runs
# Flexibility - how easy it is to alter.

Normally, we would choose a method that will solve our problem in the shortest time.  If we
expect to use the same basic model but with a varying number of observed and latent
variables, then it is worth spending the extra time to write a script in which these changes
can be made easily.

Part of writing good scripts is to write them so that you, or colleagues can understand them.
Sometimes readability can be at the expense of efficiency, and it is up to you to decide on
the balance between the two.  One of the most important things to remember is to put plenty
of  comments in your scripts.  Doing so can seem like a waste of time, but it usually pays
off handsomely when the scripts are read by yourself or others at a later date.

1.2 Matrix Algebra

MX will evaluate matrix algebra expressions.  It has a simple language, which uses single
letters to represent matrices, certain characters to represent matrix operations, and a special
syntax to invoke matrix functions.  Thus the program can be used as a matrix algebra
calculator, which is helpful in a variety of research and educational settings, and which
provides a powerful way to specify structural equation and other mathematical models.
Most users of multivariate statistics will need to know some matrix algebra, and Appendix
I gives a brief introduction to the subject, along with examples and exercises which use MX.
Even those familiar with matrix algebra should review the “How to do it in MX” sections
in the appendix as that is where elementary principles of writing MX scripts are introduced.
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2 The use of the term ‘variable’ here may be somewhat confusing to those familiar with operations research
and numerical optimization.  In numerical optimization, a variable is something that is to be changed to find the
optimum.  In SEM, these are called ‘free parameters’ or simply ‘parameters’.

1.3 Structural Equation Modeling

One of the most common uses of MX is to fit Structural Equation Models (SEM) to data.
A nice aspect of SEM is that the models can be represented as a path diagram.  MX Graph
incorporates path diagram drawing software directly; this software is in á-test.  For now, we
concentrate on translating path diagrams into models ‘by hand’.  This approach has the
advantage of giving greater understanding of the modeling process, and can yield highly
efficient scripts which are easy to change when, for example, the number of variables
changes.

There are many accounts of SEM, which vary widely in complexity and clarity, and which
are aimed at different fields of study or different software packages (Jöreskog, K.G. &
Sörbom, 1991; Bentler, 1989; Everitt, 1984; Loehlin, 1987; McArdle & Boker 1990; Bollen
1992; Neale & Cardon 1992; Steiger, 1994).  The brief account given here is intended to
provide a practical guide to setting up models in MX for those with some familiarity with
path analysis or SEM.  We begin with a simple, foolproof method, called RAM (McArdle
& Boker 1990) which would be ideal except that it is inefficient for the computer to fit.
More efficient approaches will follow.

RAM Approach

A path diagram consists of four basic types of object: circles, squares, one-headed and two-
headed arrows.  Circles are used to represent latent (not measured) variables2, and squares
correspond to the observed (or measured) variables.  In a path diagram, two types of
relationship between variables are possible: causal and correlational.  Causal relationships
are shown with a one-headed arrow going from the variable that is doing the causing to the
variable being caused.  Correlational or covariance relationships are shown with two headed
arrows.  A special type of covariance path is one that goes from the variable to itself.
Variation in a variables which is not due to causal effects of other variables in the diagram
is represented by this self-correlational path.  Sometimes this is called ‘residual variance’
or ‘error variance’.

Figure 1.1 shows a sample path diagram with two latent variables and four observed.  The
RAM model specification involves three matrices: F, A and S.  S is for the symmetric paths,
or two-headed arrows, and is symmetric.  A is for the asymmetric paths, or one-headed
arrows, and F is for filtering the observed variables out of the whole set.  The dimensions
of these matrices are fixed by the number of variables in the model.  A and S are both m×m,
and F is mO×m, where m=mO+mL is the total number of variables in the model,  themO
number of observed variables, and  the number of latent variables.  In our example wemL
have mO=4, mL=2 and m=6. 
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Figure 1.1 Example path diagram with two latent variables (P and Q) and four
observed variables (R, S, T, U)

and Note how F is an elementary matrix of 1's and 0's with a 1 wherever the row variable
is the same as the column variable.

Now that we have defined these matrices, computing the predicted covariance matrix under
this model is relatively simple.  The formula is:
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which is easy to program in MX and is quite general.  So, suppose that we have measured
R, S, T and U on a sample of 100 subjects, and computed the covariance matrix.  How would
we fit the model in Figure 1.1 to these data, using the above formula?  A sample script might
look like this:

!
! Simple RAM approach to fitting models
!
#Ngroups 1
#define latent 2             ! Number of latent variables
#define meas 4               ! Number of measured variables
#define m 6                  ! Total number of variables, measured + latent

Title Ram approach to fitting models     ! Title 
 Data NInput=meas NObserved=100          ! Number of variables,subjects
 CMatrix File=ramfit.cov                 ! Reads observed covariance matrix

 Matrices;                    ! Declares matrices
  A Full m m                   ! One-headed paths
  S Symm m m                   ! Two-headed paths
  F Full meas m                ! Filter matrix
  I Iden m m                   ! Identity matrix
 End Matrices;                ! End of matrix declarations

 Specify A                    ! Set certain elements of A as free parameters
  0 0 0 0 0 0
  0 0 0 0 0 0
  1 0 0 0 0 0
  2 0 0 0 0 0
  0 3 0 0 0 0
  0 4 0 0 0 0
 Specify S                    ! Set the free parameters in S
  0 
  5 0 
  0 0 6
  0 0 0 7
  0 0 0 0 8
  0 0 0 0 0 9
 Value 1.0  S 1 1 S 2 2       ! Put 1's into certain elements of S
 Matrix F                     ! Do the same for Matrix F but a different way
  0 0 1 0 0 0                  ! Note - this could be omitted if F had
  0 0 0 1 0 0                  ! been declared ZI instead of full.
  0 0 0 0 1 0
  0 0 0 0 0 1
 Start .5 All                 ! Supply .5 starting value for all parameters

 Covariance F & ((I-A)~ & S); ! Formula for model
End group
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This script is organized into six sections: (i) defines, (ii) title and data reading, (iii) declaring
matrices, (iv) putting parameters into matrices, (v) putting numbers into matrices and (iv)
the formula for the model.  More detail on all these components can be found in the body
of the manual, but let’s look at some of the basic features.  

# Anything after ! is interpreted as a comment. Blank lines are inactive but serve to
visually separate the sections of the script.  

# The #define statement is used to preassign numbers to certain strings of letters.
After a command like #define latent 2, MX will interpret ‘latent’ as 2 whenever
it is trying to read a number.   #NGroups indicates the number of groups in the script.

# The Title line is required.

# The Data line is required and supplies essential information about the number of
variables to be analyzed (NInput_vars) and the number of subjects measured
(Nobservations).

# The CMatrix statement reads in the observed covariance matrix from a file, in lower
triangular format.  The file ramfit.cov might look like this:
*
1.51
.31 1.17
.22 .19 1.46
.11 .23 .34 1.56
where the * indicates free format.

# The Matrices line is required and starts the declaration of  matrices that will be used
in the covariance statement.  We make use of the #define’d words to get them the
right size.

# Specify puts free parameters into matrices.  All the usable elements of the matrix
are listed (i.e. only the lower triangle for symmetric matrices, or only the diagonal
elements for diagonal matrices).  A zero indicates that the element is fixed, and a
positive integer indicates that it’s free.  Different positive integers represent
different free parameters; if we wished to have parameters 1 and 2 set equal, we
would replace the 2 with a 1. 

# The fixed values of 1 for the variances of the latent variables are given with a Value
statement.

# Start .5 all sets all the free parameters to .5 as an initial guess of the parameter
estimates.



6 Introduction to structural equation modeling

P Q

X '
P

Q

1 a

a 1

,

P Q

Y '

R

S

T

U

b 0

c 0

0 d

0 e

and

R S T U

Z '

R

S

T

U

f 0 0 0

0 g 0 0

0 0 h 0

0 0 0 i

YXY )) % Z

# The Covariance statement supplies the formula for the model.  We have used the
& operator for quadratic matrix multiplication (A&B = A*B*A’), to make the script
more efficient.  It would work equally well, and only slightly more slowly with the
full expression F*(I-A)~*S*(I-A)~’*F’ given above.

# End group marks the end of the script.

What are the advantages and disadvantages of setting up models with the RAM method?
On the positive side, it is extremely simple and general.  It doesn’t matter if there are
feedback loops, everything will be specified correctly (see Appendix D).  Of course, some
care may be required with the choice of starting values, but we do have a practical method.
On the negative side, the covariance statement involves inverting the (I-A) matrix, which
will be slow when we have many variables or a slow computer.  Many models do not need
to use matrix inversion in the covariance statement.  In fact, it is only feedback loops which
make this necessary; we can therefore seek a simpler, more efficient specification of the
model.  There are many of these, but we shall be aiming for one that is systematic and
straightforward.

Simplified MX Approach for Models without Feedback Loops

Consider Figure1.1 again.  It has two levels of variables: P and Q at level 1, and R, S, T and
U at  level 2.  We could put all the two-headed arrows at the first level in one matrix, all the
level 1 to level 2 arrows in a second matrix, and all the two-headed level 2 arrows in a third
matrix.  Letting these matrices be X, Y and Z respectively, we would get:

It so happens that all the observed variables are at the same level (2) in this model, which
makes life easy for us.  Although it may seem that we have artificially contrived the model
to have this desirable feature, many structural equation models can be written this way.  The
covariance formula for this model is:

and this has a very simple multivariate path diagram to represent it, as shown in Figure 1.2.
To get from Figure 1.1 to Figure 1.2 all we did was to collapse the vector of variables within
each level to form a single vector of variables at each level.  The paths are collapsed into
matrices of  paths. 
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Exercises:

1. Fit the model using the simpler X, Y and Z specification.
2. Find the change in chi-squared when the parameters b and c are set equal
3. Pick a simple published model and data and fit it with MX with the RAM

approach
4. Find a more efficient method to fit the model in 3.

To best learn how to use MX, readers should attempt the exercises themselves before
reading the next section, which describes the answer to the first exercise.

Figure 1.2 Multivariate path diagram for the system shown in Figure 1.1.
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!
! Mx partly simplified approach to fitting models
!
#Ngroups 1
#define top 2                ! Number of variables in top level
#define bottom 4             ! Number of variables in bottom level

Title Mx simplified approach to fitting model ! Title 
 Data NInput=bottom NObserved=100             ! Number of variables,subjects

 CMatrix File=ramfit.cov      ! Reads observed covariance matrix
 Matrices;                    ! Declares matrices
  X Stan top top free          ! Two-headed, top level
  Y Full bottom top            ! From top to bottom arrows
  Z Diag bottom bottom free    ! Two-headed, bottom level
 End Matrices;                ! End of matrix declarations

 Specify Y                    ! Declare certain elements of Y as free parameters
  31 0
  32 0
  0 33
  0 34
 Start .5 All                 ! Supply .5 starting value for all parameters

 Covariance Y*X*Y’ + Z;       ! Formula for covariance model
End group

What tricks have we used here?  First, the keyword Free in the matrix declaration section
makes elements of matrices X and Z free.  Matrix X is standardized, which means that it is
symmetric with 1's fixed on the diagonal, so free parameter number 1 goes in the lower off-
diagonal element (the upper off-diagonal element is automatically assigned this free
parameter as well, because standardized matrices are symmetric).  Matrix Z is diagonal, so
it will have parameters 2 through 5 assigned to its diagonal elements. We could put
parameters 6 through 9 in matrix Y, but 31 to 34 are used instead, just to emphasize that we
don’t want our specification numbers to overlap with specifications automatically supplied
by MX when the free keyword is encountered at matrix declaration time.

Note how this script is much shorter than the original, because of the reduced need for
specification statements to put parameters into matrices.  This illustrates a valuable feature
of programming with MX: with appropriate matrix formulation of the model, specification
statements can be eliminated.  The advantage of setting up models in this way is that
modifying the model to cater for a different number of observed or latent variables becomes
trivially simple.  The more complex the model, the greater the value of this approach.
Another advantage is that the computer time required to evaluate the model can be greatly
reduced.  We have not only eliminated the need for matrix inversion when the predicted
covariance matrix is being calculated, but also reduced the size of the matrices that are being
multiplied.
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Fully Multivariate Approach

We now turn to a third implementation of the same model to show how the matrix algebra
features can be used to make an efficient script which can be easily modified.  Take another
look at Figure 1.1.  The first latent factor, P, causes the first two observed variables, S and
T, whereas the second factor, Q, only affects the other two observed variables, U and V.
Perhaps we expect to change the number of observed variables in one or other of these sets.
If so, we might want to split the causal paths into two matrices, one for each factor.  So,
what was matrix Y in the simplified MX approach will be partitioned into 4 pieces: 

C the effects of P on S and T
C the effects of P on U and V (zero)
C the effects of Q on S and T (zero)
C the effects of Q on U and V 

We’ll use a separate matrix for each of these, and use definition variables to make the
changes in their dimensions automatic.
!
! Mx multivariate approach to fitting models
!
#Ngroups 1
#define top 2                ! Number of variables in top level (P,Q)
#define left 2               ! Number of variables in bottom left level (R,S)
#define right 2              ! Number of variables in bottom right level (T,U)
#define meas 4
!
Title Mx simplified approach to fitting model ! Title 
 Data NInput=meas NObserved=100               ! Number of variables & subjects
 CMatrix File=ramfit.cov                    ! Reads observed covariance matrix

 Matrices;                    ! Declares matrices
  X Stan top top free          ! Two-headed, top level
  J Full left 1 free           ! From P to R,S arrows
  K Zero left 1                ! From Q to R,S (zeroes)
  L Zero right 1               ! From P to T,U (zeroes)
  M Full right 1 free          ! From Q to T,U arrows
  Z Diag meas meas free        ! Two-headed, bottom level
 End Matrices;                ! End of matrix declarations
 Start .5 All                 ! Supply .5 starting value for all parameters

 Begin Algebra;
  Y = J|K _
      L|M ;
 End Algebra;

 Covariance Y*X*Y' + Z;       ! Formula for model
End group
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So, the major change here is to use the algebra section to compute matrix Y.  We have
eliminated the need for a specification statement by applying the keyword free to matrices
J and M.  If we thought that we might expand the model to have more than one factor for
each side, then we could further generalize the script by changing the matrix dimensions
from 1 to #define’d variables.

1.4 Other Types of Statistical Modeling

The example in this chapter only deals with fitting a structural equation model to covariance
matrices, but MX will do much more than this!  There are many types of fit function built
in to handle different types of data for structural equation modeling, including:

# Means and covariance matrices
# Correlation matrices with weight matrices
# Contingency tables
# Raw data

Also, the program’s multigroup and algebra capabilities cater for tests of heterogeneity,
nonlinear equality and inequality constraints, and many other aspects of advanced structural
modeling.

MX has a powerful set of matrix functions and a state-of-the-art numerical optimizer, which
make it suitable to implement many other types of mathematical model.  One crucial feature
makes this possible — user-defined fit functions.  The program will optimize almost
anything.  Given familiarity with matrix algebra and the basics of MX syntax, it is often
much quicker to implement a new model with MX than to write a FORTRAN or C program
specifically for the task.  A slight drawback is that the MX script may run more slowly than
a purpose built programs, although this is usually well worth the saving in development
time.
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File Contains Data for
PostScript Printers Only

2 Introduction  to the
MX Graphical User Interface
What you will find in this chapter

How to use MX Graphical User Interface (GUI) to:

# Draw path diagrams
# Automatically create and run scripts from diagrams
# View & print results on diagrams
# Run MX scripts
# View output in Project Manager, HTML or text formats
# Edit and debug MX scripts 
# Compare results and export them to other programs.

2.1 Using MX GUI

MX GUI can be started by double clicking the MX icon in either the group window in
Windows 3.xx, or from the Start menu in Windows 95. In Windows 95 you may drag the
MX 32 icon from the explorer to the desktop to create a shortcut, which will simplify
starting the program.

Figure 2.1 MX GUI with Project Manager Window and two diagram windows open
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Figure 2.1 shows a diagram of the layout of the MX GUI when the Project Manager window
is active.  The button bar icons are grouped into: filing, editing, printing, running, and
drawing. As with any GUI you are free to behave as you like, clicking on buttons in any
order.  There are, however, some logical ways to proceed that will save time.  The purpose
of this chapter is to demonstrate the capabilities of the interface and how to use it efficiently.

You can draw path diagrams at any time during an MX session.  A diagram which is either
visible in a window or minimized is called open.  An MX script can be automatically created
from all open diagrams, sent to the Project Manager, and run.  Parameter estimates will be
displayed in the diagrams.

Path diagrams are models of latent variables (circles) and observed variables (squares),
which are related by causal (one-headed) and covariance (two-headed) paths.  While
diagrams can be drawn and printed in the abstract, to fit models we must attach ! or ‘map’
!our data to the squares.  Mapping data is the best starting point for drawing a diagram.

2.2 Fitting a Simple Model

Preparing the Data

We start with a simple dataset: a covariance matrix based on a sample of 123 subjects
measured on two variables, X and Y.  This information is entered in a .dat file, which for
those familiar with MX notation, contains the Data, CMatrix, and Labels part of an MX

script:
Data Ninput=2 Nobservations=123
CMatrix
.95
.55 1.23
Labels X Y
This file is supplied with MX Gui; biv.dat was installed in the examples subdirectory of the
MX installation directory.  For details on how to use other types of data, see chapter 3.  To
create the file yourself, any text editor, such as Microsoft's Edit program or Notepad will do.
There is a text editor built into the MX GUI, and by choosing the menu item File|New,  or
clicking the new file icon , a new file can be edited and saved from the File menu or byFile Contains Data for

PostScript Printers Only

clicking the save file . If the file is created with a wordprocessor such as Wordperfect orFile Contains Data for
PostScript Printers Only

Word, it must be saved as ASCII text.

Editing Dat Files

MX GUI includes a way to prepare data for analysis with either MX scripts or diagrams.  It
will read existing .dat files, or write new ones.  To see how this works, the example file
ozbmiodz.dat in the examples subdirectory of where MX GUI was installed can be read into
the dat file editor.  Click on MXProject and select data edit.  In the data edit window, click
Load, and then select the ozbmiodz.dat file.  The number of input variables (NI=2) appears
in the top left window, and the number of observations (NO=380) appears in the next window
to the right.  Third is the filename.  In the last window at the top is the type of data.  Last,
in the largest panel the labels from the Labels command appear.  All these fields may be
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3 For reference, other possible Optimization conditions are shown in Table 2.1.

edited to create a new dat file.  Editing the filename is best done when saving the file.

Depending on the type of data being read there may be one or two additional folder tabs
visible below the large window containing the labels.  Clicking on these tabs allows the data
to be edited or to name an external file from which they can be read.  In the ozbmiodz.dat
case, both means and covariances are supplied as data and they are both read in from
external files.

Drawing the Diagram

To start a new diagram, click on the ‘new drawing’ icon  then click the button markedFile Contains Data for
PostScript Printers Only

.  Then click the biv.dat file to open.  The program then shows a list of theDataMap
variables in this file.  You can highlight one or more of these variables by using click,
shift-click, click and drag, or control-click ! the usual Microsoft Windows conventions.  Get
both X and Y highlighted by positioning the pointer over the X variable, pressing the left
mouse button down, dragging it to the Y variable, and then releasing the mouse button.  X
and Y should now be highlighted in blue.  Hit  and two new observed variables willNew
appear in the diagram ready for analysis (they may have appeared behind the data map
window).  Click  to close the data map window.Close

Note that the variables are created with variance paths  (small double-headed arrows).File Contains Data for
PostScript Printers Only

These paths represent residual variance; they are sometimes called autocorrelational paths.
This is called a ‘null model’.  It has only variances and no covariances. 

Fitting the Model

Click  to run this job.  You will have to supply a job name and a file name.  Enter nullRun
for both, without any file extension.  MX GUI will then build, save and run the script file
null.mx.  In addition MX automatically saves the diagram into the file null.mxd which can
be reloaded later.

While the job is running, a counter appears.  The numbers it displays show that the MX

engine is still trying to solve the problem.  When it has finished the message ‘Parsing to
Core’ may appear, indicating that the graphical interface is busy interpreting the results.
Often this step is so fast that it is invisible.

Viewing Results

Results Panel
After the job has run, the Results Panel appears (see Figure 2.2).  It contains information
about the status of the optimization; in this example, the words ‘Appears OK’ should be on
the top line, meaning that the solution it found is very likely to be a global minimum3.
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Figure 2.2 The Results Panel to view the results 

Table 2.1 Correspondence between optimization codes and IFAIL parameter

Optimization Code IFAIL Serious Action
Failed! Incomputable -1 Yes Check output & script for errors
Appears OK 0 or 1 No Carefully accept results
Failed! Constraint Error 3 Yes Check output & script for

constraint errors
Failed! Too few iterations 4 Yes Restart from estimates
Possibly Failed 6 Sometimes Restart from estimates
Failed! Boundary Error 9 Yes Send script & data to

neale@psycho.psi.vcu.edu

The next line indicates the type of fitting function used, ML ChiSq, which is the usual
Maximum Likelihood fit function for covariance matrices, scaled to yield a ÷2

goodness-of-fit of the model.  The ÷2 is 39.546 in this example, with lower and upper 90%
confidence intervals of 21.564 and 62.957 respectively.  There is one degree of freedom, and
the model fits very poorly (p=.000). There are two free parameters estimated (the two
variance parameters) and three observed statistics (the two variances and the covariance).
Akaike's Information Criterion (AIC) is greater than zero, reflecting poor fit.  This
impression is supported by the RMSEA statistic, which should be .05 or less for very good
fit, or between .05 and .10 for good fit.  The high value of .538 for RMSEA, and its 90%
confidence intervals which do not overlap regions of good fit (0.393 is greater than .10)
indicate that the model does not fit well.  Click on the  to remove the Results Panel. TheOK
Results Panel can be reviewed later by selecting the Output|Fit Results option.

Viewing Results in the Diagram
When the Results Panel closes, the estimates of the variance parameters for this model
become visible in the diagram, on the double-headed arrows.  The results panel information
has been copied into the diagram.  These results can be deleted entirely (click on the results
box in the diagram and hit delete or ctrl-x) or the specific elements may be selected for
viewing and printing.  To display only the fit and p-value we would double click the results
box to bring up the results box and change the selections as shown in Figure 2.3.  If the null
option in the Preferences|Job options panel(see p 25) was used  to these data, the grayed-out
fit statistics would be available for display in the diagram.
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Figure 2.3 The Results Box Panel to Change the results displayed in the diagram

Project Manager
More information about this model can be found in the Project Manager ! click the

 button (or the toolbar icon , to open this window.  Highlighted, the script fileManager
File Contains Data for
PostScript Printers Only

name is in the left panel, the group name is in the middle panel, and the first matrix in this
group is in the right hand panel.  The values in this matrix are shown in the Matrix
Spreadsheet at the bottom of the Project Manager window.

Fit statistics for the model are shown in the left-hand panel of the manager, F: 39.546 being
the value reported in the Results Panel.  You can see the degrees of freedom, df: 1, in the
left-hand Project Manager panel as well, but depending on your display you may have to use
the slider at the bottom of the panel or resize the window to see them.  More information on
the fit of the model can be seen in the matrix spreadsheet at the bottom of the Project
Manager by clicking the  button.  Click on  again to toggle the view backStatistics Statistics
to the highlighted matrix.

In the middle panel is a list of the groups in the job ! there's only one group in this case.  In
the right hand panel is a list of matrices used to define the model (I, A, F and S), along with
the observed covariance matrix (ObsCov), expected covariance matrix (ExpCov) and the
residual, ObsCov-ExpCov (ResCov).  If you click on the ObsCov matrix you can see the
data matrix in the matrix spreadsheet at the bottom of the Project Manager.  This view of
the selected matrix can be turned on and off with the  button on the right of theView
manager.  As described below these matrices can be copied to the cliploard with ctrl-c.

The matrix spreadsheet can show not only the values of the matrix (and its labels) but also
the parameter specifications.  If you click on the  button, the parameter specificationsValue
will be shown.  Try this out for the S matrix.  This is the matrix of Symmetric arrows
(two-headed).  There are two of these, one going from X to X and one going from Y to Y.
The free parameters are numbered 1 and 2 in the specs view of the S matrix.  A parameter
numbered zero is fixed.  The A matrix contains the A symmetric paths (single-headed, causal
arrows) which run from column variable to row variable.  There are no causal paths in this
model, so all of the elements of A are zero.

Click on ExpCov in the right hand panel.  To the right is the formula used for this model.
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4 To drag something, move the mouse pointer over it, press down the left mouse button, move it to its new
position, then release the mouse button.

ExpCov ' F (I&A)!1 S (I&A)!1)F)

Models built from diagrams currently use one general formula for the covariance: 

which is written using the quadratic operator & in the MX matrix language: F&((I-A)~&S)
Beginners don't need to know how these  formulae are used to fit the model.  Details are
given in  Chapter 1 , or see McArdle & Boker (1990) for a more complete description of this
formulation. 
Click on the ResCov matrix in the right hand panel.  Notice how the diagonal elements of
this matrix are very small.  They are presented in scientific notation so 1.23e-08 means
.0000000123 and this indicates a good fit of the model to these elements. The model does
not fit the off-diagonal elements at all well.  It predicts no covariance between these
variables, but .55 is quite substantial covariance with this sample size --- as is shown by the
fit statistic of ÷2=39.55 for 1 df.   The model should be revised.

Resizing the Project Manager
The Project Manager window may be resized by pulling the side, top, bottom or corner of
it to a new position.  It is also possible to resize the proportion of the window that displays
jobs by dragging4 the bottom of the group panel up or down to a new position.  Also, the

 button will switch the matrix spreadsheet on and off.View

Saving Diagrams

All open diagrams are automatically saved to file when the job is run, but sometimes it is
useful to save diagrams manually.   The null model diagram could be saved directly (without
running it) using the following steps: 

# Click on the diagram to select it
# Click on the save-to-disk icon  (or use the File|Save menu item)

File Contains Data for
PostScript Printers Only

# Enter a filename such as null.mxd (.mxd is the default extension for MX diagrams,
which will be added automatically if you enter null without .mxd at the end).  Note
that all active (minimized or displayed) diagram windows are saved to the file.

See page 29 for details on running and saving scripts.

2.3 Revising a Model

Revising models is easy with the graphical tools.

Adding a Causal Path

Returning to the null path diagram, a linear regression model can be devised by adding a
causal path from the independent variable, X, to the dependent variable, Y.  It may clarify
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the path estimates to put more space between the variables.  Click on the open space to
de-select all the variables.  Then click on Y and move it a little to the right (if you want to
keep it aligned with X, press shift throughout the operation).  Now click on the arrow tool
icon  on the icon bar.  In the diagram window, click on X, hold the mouse button downFile Contains Data for
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and drag it to Y, and release the button.  The diagram should now have an arrow from X to
Y.  Usually we want these arrows to be straight, but sometimes it is useful to make them
curved, which can be done by dragging the little blue square in the middle.

You can now hit  in the diagram window.  Enter regress for the Job name.  Note thatRun
if instead you enter null as the jobname, it will overwrite the previous MX script and
diagram files.  This overwriting approach is useful when trying to get a model correctly
specified initially, but it is better to keep substantively different models in different diagram
and script files.  Doing so also allows comparison between them.

The model fits perfectly, as seen by the ML ChiSq of zero in the Results Panel.  It also has
zero degrees of freedom, because it has the same number of parameters as it does observed
statistics.  Such a model is often called ‘saturated’.  Click on  to view the new estimatesOK
in the diagram.

Adding a Covariance Path

The procedure to add a covariance path is essentially the same as for adding a causal path,
but you use the covariance drawing tool instead. Note that there are two types of covariance
path: variance  which appears as a little loop from a variable to itself, and covariance .File Contains Data for

PostScript Printers Only

File Contains Data for
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We'll add the covariance type to the diagram.

First, delete the causal path by selecting the pointer tool (the white arrow ) click on theFile Contains Data for
PostScript Printers Only

path once (a blue dot will appear in the middle of the path to show that it is selected) and
press delete or ctrl-x (cut). Note that you can undo a mistake with the undo tool , and thatFile Contains Data for

PostScript Printers Only

tool-changes can be accomplished via a right mouse button click on a diagram.

Second, add the covariance path by selecting the covariance tool . Then click on X, dragFile Contains Data for
PostScript Printers Only

the pointer to Y, and release. The path is automatically curved a certain amount.  The
curvature can be increased or decreased by dragging the blue dot in the middle of the path.
Single-headed arrows can be made to curve in the same way, but their default follows the
convention that they are straight lines, and we recommend keeping them that way if possible
(reciprocal interaction between two variables A6B and B6A requires some curvature to stop
the lines being on top of each other).

Third, hit  to rerun the model.  Enter covar as the name of the job and script.  AgainRun
this model fits perfectly, with zero degrees of freedom.  The parameter estimates are not all
the same as the regression model we fitted earlier.  These two models may be called
‘equivalent’ because they always explain the data equally well, and a  transformation can
be used to obtain the parameter estimates of one model from the other.

Changing Path Attributes
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A variety of characteristics of paths can be changed and made visible in the diagram with
the Path Inspector.  Double-click the covariance path that we just created in the diagram to
bring up the Path Inspector.  Using the Inspector a path can be fixed, bounded, or equated
to other paths.  Confidence intervals can be requested, and the display of  labels, start values
and other information can be switched on or off.  These changes can be made to several
paths at once by selecting them all and checking the ‘Apply to All Selected’ box in the Path
Inspector.

Figure 2.4 MX Path Inspector with parameter F fixed at .2

Fixing a Parameter

For illustration, we will test the hypothesis that the covariance between X and Y is equal to
point two.  In the Path Inspector panel for the covariance arrow check (T) “Fix This
Parameter.” Double click the start value field and type in .2 to give the fixed value for this
path.  One useful way to remember that a path is fixed is to display only the start value and
not the path label.  Uncheck the “Display Label” box and check the “Display Start Value”
box.  At the end your Path Inspector panel should look like Figure 2.4.  Click OK and then
click  in the diagram window to rerun the model.  Enter a new job name such as fixed.Run

If you now look at the Project Manager and click , you can see the fit of this modelStatistics
and compare it with the other models so far. Note that the Path Inspector also allows you to
change the boundaries to restrict path estimates to lie in a particular interval.  To constrain
a parameter to be non-negative, we would simply change the lower bound to zero.

Confidence Intervals

For any free parameter you can request confidence intervals.  Just double click on the path,
and check the “Calculate CI” and the “Display CI” boxes in the inspector.  Run the model
again, but this time just click  without entering a new job name so that the jobOK
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5 Clicking the right mouse button in a diagram offers an alternative, menu-driven way to change the
drawing tool

overwrites the existing one in the manager.  After all, we are fitting the same model and
simply calculating a few more statistics.  MX computes likelihood-based confidence
intervals which have superior statistical properties to the more common type based on
derivatives. Chapter 5 describes the method used, and Neale & Miller (1997) discuss the
advantages of using this type of confidence interval.  The main disadvantage is that they are
relatively slow to compute, so we suggest computing them only when the model is finally
correctly specified.

Equating Paths

MX uses the Labels of the paths to decide whether or not they are constrained to be equal.
To illustrate, add a latent variable to the diagram, and draw causal paths from it to both X
and Y, and constrain the two paths to be equal.  First click on the Circle tool , and clickFile Contains Data for
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on the diagram to add the circle.  Second, click on the causal path tool and add the two paths
from the new latent variable to X and Y. Third, click on one of the paths and give it the
same label as the other.  Finally, to make the model identified we should delete the
covariance (double-headed) path between X and Y.  On running it, we should find the same
perfect fit (÷2=0) of the model.  This time we have the square root of the covariance of X and
Y as estimates for the two paths.

Note that the latent variable we added had an variance path with the fixed value of 1.00 on
it.  This is different from the observed variables, which come with free variance paths,
corresponding to residual error variance.

Having a fixed variance of 1.00 makes our latent variables standardized by default.  Of
course, we could make a latent variable unstandardized by fixing it to some other value, or
(if there is enough information in the model) estimate its variance as a free parameter.

Moving Variables and Paths

It is easy to modify the appearance of a diagram by moving one or more variables.  To select
a variable, de-select everything by clicking on the selection tool 5 and then clicking onFile Contains Data for

PostScript Printers Only

some open space in the diagram.  Then click on the one variable, and drag it to its new
position.  To move several variables together, click on one of them, then press the shift key
and click on another variable. Alternatively, you can click on the background of the diagram
and drag a rectangle around the variables you wish to select.  When all the variables to be
moved are selected, you can drag them to their new location.

2.4 Extending the Model

Multiple Groups: Using Cut and Paste

A valuable feature of graphical interfaces is the ability to rapidly duplicate objects by means
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of cut and paste.  Here we go through a simple multi-group example --- the classical twin
study --- to illustrate these actions.

Fitting the ACE Genetic Model
Structural equation modeling of data from twins has been described in detail elsewhere.  In
summary, twin pairs are diagnosed as either Monozygotic (MZ) or Dizygotic (DZ).  The pair
is treated as a case, and the MZ pairs are analyzed in a separate group from the DZ.  The
structural equation model is configured with three latent variables which model possible
effects of: additive genes (correlated 1.0 in MZ twins and .5 in DZ pairs); shared
environment (correlated 1.0 in both types of twin pair); and individual-specific environment
(uncorrelated between twins).  This is a two-group example so we will draw two diagrams.

Drawing the MZ Diagram
To begin modeling, open the MX GUI and click on the open a new drawing icon .  ThenFile Contains Data for
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click the  button and the  button and select the file ozbmiomz.dat from theDataMap Open
examples subdirectory.  Select only the variable BMI-T1 and click  to drop it into theNew
drawing. Move the data map window out of the way or close it, and start working on the
drawing.

We need to add A1, C1 and E1 latent variables.  Click on the latent variable icon  andFile Contains Data for
PostScript Printers Only

draw three circles above the BMI-T1 variable.  Relabel the variables to read A1, C1 and E1
by double clicking inside the circles and typing in the new text. 

Next we need to add the causal paths from A1, C1, and E1 to BMI-T1. Click on the causal
arrow icon  and click and drag from A1 to BMI-T1, and release.  Do the same for C1 toFile Contains Data for

PostScript Printers Only

BMI-T1 and E1 to BMI-T1.  MX automatically labels arrows and variables for us, but we
want to use specific names for our paths: a, c and e.  Therefore, we double click on each
path in turn and rename it in the label field of the Path Inspector.  Care is needed here!
Depending on the order in which the latent variables were drawn, there may already be a
path called a, c or e on one of the latent variables.  Relabelling the causal paths may have
inadvertently caused an equality constraint that we don't want.  Relabel any of the latent
variable variance paths as necessary to make them different from a, c and e. Finally, because
we are going to model individual-specific variation with e we can remove the variance path File Contains Data for

PostScript Printers Only

on BMI-T1.  Click inside it so that its blue select button appears and hit delete or ctrl-x.

We now have a model for Twin 1, and we need to replicate it for the Twin 2.  Either press
ctrl-a or go to the Edit menu and click Select All.  Press ctrl-c for copy and ctrl-v for paste
(or use the icons  and  or the Edit menu equivalents) and you have a new copy of theFile Contains Data for

PostScript Printers Only
File Contains Data for
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model for an individual.  Use the mouse to drag it to the right of the existing model.  You
may have to resize the window to give yourself space for this.  Alternatively, you can zoom
out the drawing with the  button (see below).File Contains Data for
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A very important step comes next.  We have duplicated the model for twin 1 --- both the A,
C and E part and the phenotype BMI-T1. We do not want to model the covariance between
BMI-T1 and BMI-T1.  When we duplicated the model for twin 1, the new BMI-T1 box was
black rather than blue.  This is because it is not mapped to data.  To map it, we select the
variable BMI-T1 (and only this variable) in the diagram.  Then hit , click onDataMap
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BMI-T2 in the variable list, and then . The variable in the diagram turns blue and theMap
label is revised to say BMI-T2.  MX now knows what data we are analyzing.

To complete the model for MZ twins, we need to do two things. First, change the labels of
the latent variables causing BMI-T2 to A2, C2 and E2 by double clicking on the circles and
typing in the new names.  This step is for cosmetic purposes - MX will still fit the correct
model even if the latent variables have incorrect names.  Second, we must specify that the
covariances between A1 and A2 and between C1 and C2 are fixed at one.  Click on the
covariance path tool  . Click on A1, drag to A2 and release.  Do the same for C1 and C2.File Contains Data for
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Note that if you drag from right to left, the arrows curve downwards rather than upwards.
The curvature can be adjusted by clicking on the arrow and dragging the blue selection
button in the middle.

You must now fix the A1-A2 and C1-C2 covariances to one.  Click on each path in turn,
check the “Fix this parameter” box, make the starting value 1, and select “Display Starting
Value”. At this stage the diagram should look something like Figure 2.5.  It would be
possible to run this model, but the parameters a and c are confounded when we have only
MZ twins.  To identify the model we must add the DZ group.

Drawing the DZ Diagram
Adding the DZ twin group is easy.  Click on the MZ diagram and hit ctrl-a (select all) and
ctrl-c (copy).  Then press the new drawing icon .  Click on the new diagram, press ctrl-vFile Contains Data for
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(paste) and the MZ model is copied into the new drawing window.  Two steps remain.  First
click on the covariance between A1 and A2 and change its starting value to .5 ! the value
specified by genetic theory.  Second, map the observed variables to data.  Hit the DataMap
button and select the file ozbmiodz.dat.  Highlight BMI-T1 and BMI-T2 in the variable list
and click .  Because the variable labels in the ozbmiodz.dat file are the same asAutoMap
the variable labels in the ozbmiomz.dat file, the automap function maps the variables from
the list to the diagram correctly.

Figure 2.5 Starting values for an ACE twin model for MZ twins

Fitting the Model
Finally, run the model by clicking the  button in either diagram. Enter ace as theRun



22 Introduction to structural equation modeling

File Contains Data for
PostScript Printers Only

filename for the script and diagrams.  The Results Panel should report a fit of 2.3781 and
the estimates in the diagram should look like those in Figure 2.6.

Figure 2.6 Parameter estimates from fitting the ACE model to MZ and DZ twin data

Note that in this example, there were two MX errors in the error window.  These errors warn
us that although we had supplied both means and covariances as data (in the .dat files), only
a model for covariances was supplied.  See below on page 23 for details on how to
graphically model means. 
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Selecting Different Variables for Analysis

To unmap variables, you must select one and only one variable, go to the data map window,
select only that variable in the list, and then press the  button.  You can then remapUnmap
the variable in your diagram to another variable in the list by selecting the variable in the list
and pressing .  Map

The  feature lets you automatically map boxes to variables in a dataset by name.AutoMap
If you have a series of unmapped boxes in your diagram, and a series of unmapped variables
in your dataset, then pressing  will map them by name.  This is very useful whenAutoMap
you have run an analysis on one dataset, then wish to fit the same model to a different
dataset.  It also comes in handy when you have multiple groups, with variables with the
same names being analyzed in different groups, as we did with the twin study example
above.

Modeling Means

The MX GUI allows the user to draw and fit models to means as well as to covariances.
This is simplified with a new type of variable in a path diagram, the triangle.  Let's add
means to the twin model we developed earlier.  If you do not still have the MZ and DZ
drawings open, load them from the file ace.mxd.

Select the MZ diagram and click on the triangle tool . Point the mouse somewhere belowFile Contains Data for
PostScript Printers Only

the rectangles and click once to create a triangle.  Then use the causal path tool  to drawFile Contains Data for
PostScript Printers Only

paths from the triangle to the variables BMI-T1 and BMI-T2.  Do the same thing in the DZ
group.  MX has automatically set new, free parameters on the paths and we can run the job.

The output for this job should give exactly the same goodness-of-fit to the model as we had
before, because the model for the means is saturated.  It has one free parameter for each
mean.  Let's test the hypothesis that Twin 1 means are equal to Twin 2 means.  Go to the MZ
diagram and make the label on the path from the triangle to BMI-T1 the same as the label
from the triangle to BMI-T2.  Do the same in the DZ diagram (keep the labels different from
those on the paths from the triangles in the MZ diagram).  Run the job again, and give it a
new name, like t1eqt2.  In the Project Manager window we see that the ÷2 (F:) has only
slightly increased  from 2.38 to 2.55 ! an increase of less than .2 for two degrees of
freedom, which is non-significant.  This indicates that the hypothesis that the means of twin
1 and twin 2 are equal is not rejected.

To continue the example we can test whether MZ means are equal to DZ means.  This is
done by going back to the DZ diagram (ctrl-tab is a shortcut way to switch between MX

windows) and changing the paths from the triangle so that they have the same label as those
in the MZ group.  Run the model again and call it mzeqdz.  The ÷2 of 6.24 has increased by
about 3.7 over the t1eqt2 model, for one degree of freedom, which is not significant at the
.05 level.  The hypothesis that the MZ means equal the DZ means is not rejected.  The
sample sizes here (637 MZ and 380 DZ pairs) are quite large, so the chance that this result
is a type II error (failure to detect a true effect) is small.  The observed MZ-DZ mean
difference must be small relative to the variance of body mass index in these data.  We can
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check this result in the Project Manager window.  Select the t1eqt2 job and examine the
predicted MZ and DZ mean in the ExpMean matrix for the MZ group and compare it with
the ExpMean matrix in the DZ group by alternately selecting the MZ and DZ groups.  The
DZ mean is .45 and the MZ mean is .34 which is approximately .11 of a standard deviation
different because the expected variance (see ExpCov) is about .97 for this model.  The
standard error of the difference between two means is given by the formula

.  This formula isn't entirely appropriate for the case in hand because weSD 2
1 /n1%SD 2

2 /n2
have correlated observations making up the two samples.  If we pretend that they are
uncorrelated then the standard error would be approximately %1/760 + 1/1274=.0458.  If we
pretend that the twins are perfectly correlated then we would have %1/380 + 1/637=.0648.
The first estimate of the standard error would give a z-score for the difference of
.11/.0458=2.40 (significant at .05 level), whereas the second would give 1.70 (not
significant at .05 level).  The truth lies somewhere in between, and a very nice property of
the maximum likelihood testing is that it handles these complications with ease and provides
appropriate tests for both independent and correlated observations.  The ÷2 difference test
above showed that the difference was not quite significant at the .05 level. Better still, we
can obtain confidence intervals on this ÷2 test and on the parameter estimate itself.

The MX Model for Means
When computing a predicted mean, MX traces the paths from an observed variable
(rectangle) to a mean variable (triangle) and multiplies the paths together.  If there are
several triangles or pathways from a triangle to an observed variable, it sums their
contributions to the mean.  Note that, unlike covariances, there is no changing of direction
when traversing paths, and only the single-headed arrows are used.  The matrix formula MX

uses to compute the predicted means (shown in ExpMean in the Project Manager) is

where U is a unit matrix and M contains the paths from the triangles to the circles and
squares.

2.5 Output Options

Zooming in and out

To zoom into a part of a diagram, click on the zoom in tool  then click on the diagramFile Contains Data for
PostScript Printers Only

workspace and drag a rectangle around the part of the figure that you wish to enlarge.  

To zoom out, select the zoom out tool  click on the diagram and drag a square inside it.File Contains Data for
PostScript Printers Only

Note that this feature works proportionately, so that it is possible to get a very tiny and
unreadable figure if you drag a very small square by mistake. 

Sometimes zooming operations can cause a diagram to become so big or small that it
disappears altogether.  A click on the zoom undo button  will shrink or expand theFile Contains Data for
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diagram to roughly fit the window size.
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Copying Matrices to the Clipboard

A matrix may be copied to the Windows clipboard by selecting it in the right hand panel of
the Project Manager window, and pressing ctrl-c or the copy icon . The contents of theFile Contains Data for
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windows clipboard may then be pasted into wordprocessing or spreadsheet applications,
usually by pressing ctrl-v or clicking the appropriate paste tool or menu item.  By default,
the matrices are copied with a tab character between each column, and a carriage return
character at the end of each row --- suitable for many applications. These defaults may be
changed using Preference|Matrix Options.  For example, to obtain output formatted suitable
for a LaTeX table, the user-defined delimiters should be changed to & for columns and \\
for rows.  Note also that the number of decimal places may be changed.  Diagrams may be
copied to the clipboard as described below.

Comparing Models

When several models have been fitted to the same data, it is possible to generate a table of
parameter estimates and goodness-of-fit statistics automatically. The menu item Output|Job
Compare will build a file of comparisons, which you can view with a text editor.  The first
column of this file contains a list of all the paths in the model, followed by the fit statistics.
The remaining columns are the estimates and fit statistics found for all the models in the
project manager.  This table may then be copied into other software for publication.  The
format of the table depends on the Preference|Matrix Options in the same way as copying
matrices to the clipboard.

To get only a few of the models in the manager, simply delete the jobs that should be
excluded from the comparison, by selecting them and hitting the Project Manager Delete
button. 

Setting Job Options

MX uses a default set of job options suitable for most general purpose model-fitting, but
there may be times when other settings are desired. The Job Option panel (menu
Preference-Job Option) is used to change these settings.  Figure 2.7 shows the default
settings.
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Figure 2.7 The Job Option Panel.  Text output with four decimal places of precision
and 80 column width will be generated.  Debug statistics and individual pedigree likelihood
statistics will not be generated.  Confidence intervals (90%) on the fit statistics will be
computed, and null model and power statistics will not.  Parameter estimates will not be
standardized.  New MX jobs created from diagrams will be started from the starting values
in the diagram, not the current estimates.

Text Output
Having run an MX job, you may wish to view the regular text output. If so, simply hit the
output tool .  The MX GUI comes with a shareware editor called notebook.exe which youFile Contains Data for

PostScript Printers Only

can select.  It allows you to edit and view much larger files than Microsoft Windows'
Notepad editor.  You can select an alternative text viewer via Preferences (though we do not
recommend Microsoft Notepad because of its inability to edit large files).

HTML Output
Flexview is supplied with MX to simplify the viewing of HTML output. In order to use it,
you must first tell MX to produce HTML output when it runs, before running the job.  This
you do via the Preferences-Job Option menu item.   Netscape 4.5 could be chosen, but
earlier versions start up slowly every time.  Under Internet Explorer 4.0, choosing explorer
as the html viewer (typically found in c:\windows\explorer.exe) works quite well.  For
large output files, Flexview does not work well and text output or another viewer should be
used.  Flexview is shareware and you should register it if you decide to use it regularly.

HTML and Text Appearance
You can change the number of decimal places and the width of MX output by entering
different values in the decimals and width fields. 

Debug Output
Auxiliary output about optimization may be printed to the file nagdump.out by requesting
NpSol values greater than 0 (up to 30).  Debug output will go to this file as well if Debug
is set to 1. Debug prints the values of the parameter estimates and the fit function for each
group for every iteration during optimization.  Such files can be both large and slow to write
to disk, so we recommend only using these features in an emergency.

Individual Likelihood Files
If you are using raw data, it is possible to save the individual likelihood statistics (see #p.
72) to a file by entering a filename in the text box “Ind. Likelihood File”.

Additional Statistical Output
Certain ‘comparative’ fit indices require the computation of the fit of a Null model.  By
default the null model has free parameters for the variances and zero covariances.  This
model will be fitted automatically by MX and the statistics will be computed if the Null
model radio button is set to Auto.  Sometimes, a different null model than the default is
required; this model should be fitted by the user and the ÷2 and degrees of freedom noted.
These statistics would then be entered by first selecting the Manual radio button and then
entering values in the Null ChiSq and Null Df fields.  The additional statistics will be visible
in the Results Panel.
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Power Calculation
To compute statistical power, the “Power Calculation” checkbox should be checked, and the
alpha-level and degrees of freedom should be entered. See the #p. 62 for information on how
to fit models that assess statistical power.

Confidence Intervals on Fit
By default the MX GUI requests 90% confidence intervals on fit.  If an alternative interval
is required, it can be entered in this text field.  If CI's are not required, then the check box
can be cleared. Note that this is not the same as confidence intervals on the parameter
estimates, which must be requested for paths using the Path Inspector. 

Standardize
By default, MX produces unstandardized parameter estimates.  This default may be changed
by selecting the “Standardize” check box.  The graphical interface then generates different
MX scripts which include non-linear constraint groups to remove the variance of the
variables. This box should be checked when working with correlation matrices to obtain
correct confidence intervals on the parameters.  Correlation matrices should be entered in
dat files with a KMatrix not a CMatrix command. 

Restart
The Restart check box changes the scripts generated from diagrams. Instead of using the
starting values of paths, the current estimates are used instead.  If a model has been fitted
before, and is only slightly changed, e.g. by fixing one parameter, then re-running from the
existing estimates may be much faster than starting from the starting values again.

Optimization Options
MX uses certain default values of the optimization parameters which have proven to be
reliable under a variety of conditions. Occasionally it is necessary to use different settings;
these technical options are described on p. 101. For the most part, these options should not
be changed.  

If optimization ends with the message “Possibly Failed” you can try to restart optimization
automatically with Random Start at -2 for two attempts to solve the problem.  If you want
to try randomized starting values for a model, set it to a positive value, but be sure to put
sensible boundaries on all your free parameters.

Printing

To print diagrams, click the printer icon or use the File menu and select Print.  Note that
File Contains Data for
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the part of the diagram visible in the window is printed.  Print can also be used to print
scripts from the editor window.  The script font can be changed with the  Preferences|Script
fonts menu item.

Printed output can be previewed with the File|Print preview menu item or the preview tool File Contains Data for
PostScript Printers Only

on the toolbar.  This feature is a good way to save time and paper. Some features of printing,
like printing the object handles on selected objects, may be unexpected, so print preview is
recommended.



28 Introduction to structural equation modeling

Improving Print Quality
There are various ways to improve the visual appearance of the diagrams.  Generally, these
are worth doing for final copy, such as printing for publication or to make slides for a talk.
 
First, you can move the path labels away from the paths by clicking on them and dragging
them to a new location.  Occasionally it may be difficult to select the label because another
object, such as the path, is selected instead.  If so, try clicking slightly to the right of the
label.  Second, in Preferences you can choose font size and appearance, separately for the
paths and the variables.  Also in Preferences you can choose line thickness, which currently
affects both the paths and the lines around the variables.  To add impact for color printing,
you can change the color of the background and foreground components (paths, boxes, text
etc.) in a diagram. Third, remember that the amount of information displayed about a path
! labels, estimates, confidence intervals, boundaries and so on ! can be changed for
individual paths with the Path Inspector.  Revising the appearance of many paths
simultaneously can be done by selecting several paths and checking the “apply to all” box
in the Path Inspector.

The variance arrows sometimes become obscured by paths going to and from variables.
They may be dragged to one of eight positions around circles or squares.

Aligning Variables and Paths The grid  tool  adds a grid to the currently activeFile Contains Data for
PostScript Printers Only

drawing.  The color and size of this grid can be changed via the Preferences|Grid menu item.
It is then simple to align circles and squares to this grid by moving them.  Much faster is to
use the snap to grid feature , which automatically aligns variables on the grid.  ObjectsFile Contains Data for
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will move only to another grid place, so moving a variable a small distance often won't have
any effect at all.  Moving it a greater distance will allow it to snap to a new grid position.
The granularity or size of the grid can be changed using Preferences|Grid size.

Paths labels are given a default central position based on the length and direction of the path
they are labeling.  If a path is longer in the vertical axis than the horizontal, its label will be
centered vertically.  Conversely, if it is longer in the horizontal axis its label will be centered
horizontally.  By moving objects further away it is sometimes possible to automatically align
relevant path labels; this is the preferred way to align path labels.  If necessary it is possible
to move each individual label away from its default position by dragging it to a new position
! but this should be used as a last resort.  We recommend that print preview (File-Print
Preview or  be used to check the visual appearance of a figure.File Contains Data for
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Exporting Diagrams to other Applications

MX GUI uses the standard Windows clipboard to export diagrams to other applications.  To
export a diagram, left-click once on the background of the diagram, and then press ctrl-c or
press the copy icon .  This copies the figure to the clipboard.  Open another application,File Contains Data for
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such as Wordperfect, MS Word, Harvard Graphics or Visio and press ctrl-v (or select the
paste menu command or click the paste icon ).  Partial figures may be copied in the sameFile Contains Data for
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way, by selecting only part of the diagram before pressing ctrl-c.

Diagrams may also be printed to a postscript file, if you have a postscript printer driver
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installed.  From the printer control menu, select encapsulated postscript as the postscript
option, and check the 'Print to file' box.

Files and Filename Extensions

MX uses and creates a lot of different files, with specific filename extensions attached to
them.  To save disk space, some of them may be deleted.  Table 2.2 lists the filenames and
their contents, and indicates whether they may be safely deleted.  Typically one does not
want to delete data or useful drawing or script files. Malfunctioning scripts might be better
deleted.  At this time .prj files cannot be read back into the GUI.

Table 2.2 Summary of filename extensions used by MX

File extension Contents Delete

.dat MX data Probably not

.mx Input script Probably not

.mxd MX path diagram Probably not

.mxo Text output If no longer needed

.htm Hypertext output If no longer needed

.mxl Frontend output Yes

.prj MX project Probably not

.exe Executable MX program No

.dll Dynamic link library No

2.6 Running Jobs

Running Scripts

Many previous users of MX and those working with non-standard models (such as those
involving constraints or special fit functions) will want to be able to run such models.  The
MX GUI has been designed to make working with scripts efficient.  It lets you open script
files, edit them, and view output in either the manager or text or hypertext (HTML) formats.
In addition, if there are errors in the script, it will display them and with a click of a button
will take you to the editor window with the problem text highlighted.

Let's take an example script.  Start the GUI and click the open icon . Choose twinpar.mxFile Contains Data for
PostScript Printers Only

and hit  in the editor window.  The MX statistical engine runs the job in the backgroundRun
and then delivers the output to the manager.  We don't need to bother with the details of this
particular job, it's just an example to show how several groups appear.  You can easily look
at the matrices in the different groups by selecting the group in the middle panel and the
matrix in the right hand panel.

As we run more jobs, perhaps editing the script or selecting other scripts, the Project
Manager fills up with the new jobs.  The fit statistics from all jobs become visible in the
bottom panel when the  button is pressed.Statistics
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Errors in Scripts
To help debugging of MX scripts, the line and column of the input file where an error
occurred is automatically sent to the GUI to speed up debugging of scripts.  Let's see how
this works with an example.

Edit a dummy script by hitting the new icon .  Type in the following:File Contains Data for
PostScript Printers Only

Title
 Data Ngroups=1
 Oops a mistake
 Begin Matrices;

Hit  and see what happens.  Click the left mouse button on the error, and note how theRun
editor window shows the Oops text highlighted. You are now in a good position to fix the
problem, if you are familiar with the script language.  A full description of the language is
given in chapters 3-5 and examples are in chapter 6.  Courses on MX are run quite regularly;
consult http://views.vcu.edu/mx.

Sometimes it is helpful to look at the text or HTML output file to see full details of the error.
Click the right mouse button on the error to bring up the output file.  With HTML, the error
is automatically presented, with Text output it is necessary to scroll to the end of the file.

Editing Mx Header Files

MX provides a system for advanced users to make it easier for the beginning user to start
using the program.  Using this approach to script writing can also make it easier for all users
to change the script for other data sets or to change the number of variables in the analysis,
which variables are analyzed, the number of factors to be used, or even the type of model
to be fitted.

In the examples subdirectory, the files factor.mxt (template), factor.mxh (header) and
factor.dat (data file) illustrate how this can be used.  Opening the header file, from the
MXProject-header_edit menu, the user can change the number of variables being analyzed,
or the number of factors being fitted by clicking on the relevant lines of the header file in
the header edit box.  For a more detailed description of this example, see page 150.  An
example of header and template files for fitting alternative genetic models to twin data is
described on page 151.

We expect this new feature to lead to a collection of header and template files that will be
added to the website http://www.vipbg.vcu.edu/mx in the future.

Using Networked Unix Workstations

Performance and Multi-Platform Environments
The difference in performance between high-end MS windows computers and Unix
workstations is narrowing all the time.   Indeed, the same hardware can be used for either
Unix or MS windows so it might be argued that it has disappeared.  However, it is not very
cost-effective to supply every student and faculty member with the latest and fastest PC.
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6 On Sun systems it may be necessary to change the shell with the command ksh to allow more than one
job to be run per directory
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Many institutions still use a mixed platform computing facility in which there are powerful
Unix servers available for general use, along with PC computers that have networked access
to these servers. The Unix machines often have large amounts of memory, high-speed disk
access and may offer much faster CPU than is available for PC's.  To facilitate the use of
these remote machines, MX GUI has a networking component which allows the user to
select a remote Unix host to run MX scripts.

The Host Options Panel
Figure 2.8 shows the Host Options Panel set for local (on the PC on which MX GUI is
running; left panel) and remote processing (right panel).  By unchecking the local host
checkbox, the user can enter the IP address of the Unix machine and their username and
password.  MX is not (yet) a standard part of the Unix operating system, so it must be
installed on the host in question before remote access to it will work.  The files and
instructions for installation are available at http://www.vipbg.vcu.edu/mxgui/unix.html.
As a user, you should make sure that your path on the Unix host includes the directory in
which MX-Unix has been installed, which is usually /usr/local/bin.

Figure 2.8 Host Options Panel set for local PC use (left) and remote Unix use (right).

Running a Job Remotely
The following steps are required to run a job remotely:
# Make sure you have an account on a Unix host which has the MX server installed
# Go to the Host Options panel (Preferences-Host Options menu) and enter the

machine name, username and password
# Click Run in your diagram or script window
# Enter any commands to change directory6 on the remote host and click ‘Execute’
# Click ‘Run MX’
# Click ‘Run MX’ again if it says Possible Incompatible Remote Engine, Install New

Remote Engine (this error often occurs spuriously)
# Wait for the job to run and to be transferred back to the GUI.

Transferring Files to Unix Hosts
Running MX GUI on a remote host has a few additional considerations. Foremost is the use
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of files, especially the File= subcommand used in MX scripts.  Any file mentioned in a
File= subcommand must be transferred to the remote Unix host (using e.g., ftp) in order for
the Unix host to access it.  For this reason, it is best not to put pathnames in the File=
subcommands, because of inconsistencies between the Unix filenaming system and the
windows filenaming system.   It would become messy if the only place used for MX files
was the root directory on the Unix host, so there are facilities for changing directory on the
remote host prior to running scripts there.  In the Host Command window, the user can enter
a Unix command such as cd mymxfiles to change directory, before hitting the .Execute

One exception to the need to transfer files to the remote host is the .dat file specified in a
diagram  command.  This file will be included in the script and automaticallyDataMap
transferred to the Unix host.  For this reason, it can be best to keep all the data in the .dat file
itself and not to use the File= subcommand at all. In some circumstances this may be
inefficient, especially if the network connection is slow, as all the data will be transferred
with the job --- this applies especially to large raw data files or large asymptotic weight
matrices.  If several jobs are to be run using the same dataset, it may be more efficient to ftp
these files to the Unix host and return to using File= in the script.

Increasing Backend Memory
The default amount of memory available for the MX engine to store data, perform matrix
algebra and optimization is 100,000 words for the PC version.  This can be increased when
necessary by changing the value in the Run Options panel (Figure 2.8).  The Unix versions
have a default of one million words of memory and at present this cannot be altered.  If a
larger Unix version is required, please email neale@vipbg.vcu.edu for a special build.
Sometimes more efficient re-specification of a problem can free up workspace.

2.7 Advanced Features

In this section we consider some of the more advanced features of MX GUI, including
adding non-linear constraints to diagrams, and the use of continuous moderator variables.

Adding Non-linear Constraints to Diagrams

In earlier sections we saw that it is straightforward to make one path equal another by giving
it the same name.  It is also simple to force the estimate of a path to lie within certain limits
by double-clicking the path and entering boundary constraints.  Much less simple is the
addition of non-linear constraints which at this time can be done only by directly editing the
script.
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Figure 2.9 Higher Order Factor Model with nonlinear constraints imposed such that
the variances of F1 and F2 are constrained to equal 1.0 (.24+.872 =1.0)

Figure 2.9 shows a diagram with a higher-order latent factor (H) and two first-order factors
F1 and F2.  Suppose that we wish to constrain the variance of the second-order factors to
equal unity.  One simple way to do this might be to eliminate H and allow the factors F1 and
F2  to correlate, and give them error components fixed to unity.  However, suppose that the
paths from H were of substantive interest themselves, perhaps because of reports from other
investigations.  This example is for illustration, so we'll do it the hard way with non-linear
constraints.  The data come from Horn & McArdle (1992) and concern the sub-scales of the
WAIS intelligence test, taken by subjects aged between 16 and 28 years of age.  The tests
may be broadly categorized as verbal (IN: Information; CO: Comprehension; SI:
Similarities; and VO: Vocabulary) or spatial (PC: Picture Completion; BD: Block Design;
PA: Picture Arrangement; and OA: Object Arrangement).

The following steps are necessary:
1. Draw diagram
2. Build script from diagram (To Script)
3. Edit script file:

a. Increase NGroups by one to allow for new constraint group
b. Edit in the constraint group using MX script language

4. Run the job from the script
5. View parameter estimates in the diagram

The most difficult part of the sequence is of course 3(b), where knowledge of the MX script
language and the way that the MX GUI creates scripts is required.  We now give a brief
description of the approach used to implement the constraints for this example.

Because the matrix expression for the covariances of all the variables (both latent and
observed) is (I-A -1) * S * (I-A-1)' we can compute this by equating matrices to those of the
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first group, and entering this matrix formula in a Algebra section.  More tricky is to extract
the relevant matrix elements corresponding to the variances of F1 and F2  This can be
achieved using the \part(A,B) function which partitions matrix A according to the rows and
columns specified in B.  Matrix B must have four elements and these identify two corners of
the sub-matrix, so setting the elements of B to 9,9,10,10 will extract the 2×2 matrix from
element 9,9 to element 10,10.  We know that this is in fact the sub-matrix that we need by
looking at the variable labels for matrix S in group 1.  Variables F1 and F2 appear as the
ninth and tenth elements of the list of labels.  A second matrix algebra statement can be used
to create the sub-matrix and place it in matrix T.

It remains to equate the diagonal elements of T to unity.  This we can do using the d2v matrix
function which extracts the diagonal of a matrix to a vector.  It is then simple to request a
constraint between this vector and a vector in which every element is 1.0, as shown in the
following lines of MX script:

Title Add constraint to variances of F1 and F2
 Constraint Ni=2
 Begin Matrices = Group 1
  P Full 1 4 ! for the partitioning part
  U Unit 1 2 ! Two 1.0 elements to equate to variances
 End Matrices
! deduce from labels for S above that F1 and F2 are variables 9 and 10
 Matrix P 9 9 10 10  ! to be used for partitioning
 
 Begin Algebra;
  R= (I-A)~&S;  ! computes covariance of all variables, latent and observed
  T= \part(R,P);! computes the sub-matrix of R from element 9,9 to 10,10
 End Algebra;

 Constraint \d2v(T) = U ;  ! constrains the diagonal elements to equal U

 Option df=-1 
! I add this df adjustment because really and truly all we have done
! is put the same constraint in twice, because the paths from H to F1 and
! from H to F2 are equal.  A more efficient way would be to only constrain
! one of the variances (F1 or F2) but this is an illustration.
End

The constraint syntax above involves the = operator because we want an equality constraint.
For nonlinear boundary constraints one could use the < or > symbols instead.

Once the script has been modified, care must be taken not to overwrite it with a new script
from the diagram.  If the diagram is modified, it is necessary to go through steps 2-4 again
to run it, otherwise the constraint group will lost.  However, these steps are much easier the
second time because cut and paste can be used to get the constraint group from the earlier
script.
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y ' b1x1%b2x2% ....b3x1x2%e

A final remark concerns the use of option df=-1.  By default, MX will add one observed
statistic for each non-linear constraint imposed.  This addition of a statistic is analogous to
the loss of a free parameter when two parameters are linearly constrained (equated) MX

assumes that whatever non-linear constraints you are using effectively reduces the number
of parameters (or equivalently increased the number of observed statistics) in the same way.
In this example we did a silly thing, because both constraints were identical, so we really
gained no information by adding the second constraint. The df=-1 option corrects this
silliness.

Moderator Variables: Observed Variables as Paths

An interesting feature of MX is that it allows the specification of models that can differ for
every subject in the sample.  In some sense, this is the extreme case of multiple groups, and
it has some interesting statistical possibilities.  For one, this type of modeling is equivalent
to Hierarchical Linear Modeling (HLM) as specified by Bryk and Raudenbush (1992) and
others.  This aspect of MX has not received much attention, but perhaps that will change
now that the graphical interface facilitates the specification of some of these models.

We will illustrate the method with an uninspiring example of interaction terms in linear
regression.  This example has the advantage that we know the answer and can compare it
with results from standard methods.  The standard model of linear regression with
interaction that we shall use is

where b3 is the interaction parameter of interest.  In a path diagram, it is possible to model
these data by pre-computing x1 ×x2 and fitting a model like the one shown in Figure 2.10.
An alternative approach would be to allow two pathways from x1 to y, one having the
parameter b1, and the other going through two paths, one with the parameter b3 and the other
having the individual's data for x2 on it.  Thus, by path analysis, the model for y would be
equivalent to the model in the equation.  The question is, how do we get individual-specific
data onto the paths in an MX model?
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Figure 2.10 Linear Regression with Interaction Model with two independent variables,
X1 and X2  and their product X1*X2 and one dependent  variable Y.

Raw data is essential for fitting these ‘data-specific’ models.  As described in the MX

manual, two basic forms of raw data may be read by MX:  variable length (‘VL’), and
rectangular (‘Rect’). Rectangular is generally much easier to generate, and except for special
cases such as many siblings in a family or very serious missingness it is easier to use.  A
.dat file with rectangular data might look like this: 

!
! Rectangular data file created by Jane Datapro on Sept 31 1997
! using program /home/janedata/mxstuff/makemx.sas
!
Data NInput=4 NObservations=0
Labels X1 X2 X2d Y
Rectangular
1.234 2.345 2.345 3.456
4.321 3.210 3.210 2.109
...
End Rectangular

The ... indicate the remaining records of the dataset.  Note the valuable comments at the
start of the file - very useful for later retracing one's steps.  The special feature of this data
file is that the second variable (Mod) has been included twice (Mod2 is identical to Mod for
all cases). We are going to make use of this variable twice - once as an independent variable,
and once as a moderator variable.  In a linear regression we normally remove the main
effects of a variable before testing for the presence of interaction, hence the duplication.
Again we should remember that this simple example is for illustration, and that the same
thing could be achieved more easily with standard software. The more complex possibilities
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that such modeling encompasses could not be easily specified.

Close any diagrams that you have open and start a new diagram , hit  and openFile Contains Data for
PostScript Printers Only DataMap

the nonlin.dat file from the examples directory. Highlight the X1, X2 and Y variables and
click .  Then draw a covariance path between X1 and X2 and causal paths from theseNew
variables to Y.  Then add a latent variable M by drawing a circle and draw paths from X1 to
it and from it to Y.  Select the path from the dummy variable to Y and then hit DataMap
again.  Highlight the remaining unmapped variable, X2d and click .  This variable hasMap
now been mapped to the path from M to Y.  The path should be the mapped variable color
(blue by default) and there should be a diamond surrounding the path label to indicate that
it is mapped to a variable.  The total effect from X1 to Y now contains both the linear and
the interaction terms.  Finally add means to the model; for raw data we must always have
a model for the means.  In the end your figure should look something like (topologically
equivalent to) Figure 2.11.

Figure 2.11 Linear Regression with Interaction; a moderated regression approach.
Variables X1 and X1d are identical in the dataset.  Each individual has a
different model because they have different values of X1d.

 the model and be patient; fitting models of this type is computationally intensive.  OneRun
special thing to note about the printed output and the results on the diagram is that the value
on the X2d path is that of the last case in the file.   The results should closely approximate
the values used for simulation, namely b1=.5; b2=.4; b3=.3; and e=.36 More interesting
models would involve moderation of the effects of latent variables, and they may be
specified in exactly the same way.
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3 Outline of MX Scripts and Data Input
What you will find in this chapter

# General rules for job structure and syntax
# Details on how to read data and select variables for analysis

3.1 Preparing Input Scripts

Comments, Commands and Numeric Input

Input files should be prepared with the text editor of your choice.  If you use a
wordprocessor (such as Word Perfect or MS Word) the input file should be saved in DOS
text (ASCII) format.

You may put comments anywhere in your input file using the character '!'.
The MX command processor ignores:
C All characters following ! on any line
C Blank lines
C Anything after column 1200

Lines in MX scripts may be up to 1200 characters long on most systems; the IBM RS6000
compiler has an upper limit of 500 characters, which is the limit for the AIX version.

The processor is also entirely insensitive to case, except for filenames under UNIX.
Essentially, MX reads two things: keywords and numbers. Unless explicitly stated otherwise,
the first two letters of a keyword are sufficient to identify it.  Keywords are separated by one
or more blank spaces.  Once the program has identified a keyword you can extend it to
anything you like as long as it doesn't have a blank character in it, so Data and
Data_silly_words_ have the same effect.

Quite often, a keyword has the format KEY=123 where 123 is a numeric value to be input.
This is called a parameter.  MX ignores all (including blanks) non-numeric characters found
between recognition of a parameter and reading a number, so that NI=100 and NInput_vars
a lot of words 100 have the same effect.

O Note: The exception to this rule is when it encounters a #define’d variable, which it will
accept instead of a number.

Syntax Conventions

The syntax described for commands follows these conventions: 
C alternatives are represented by /
C optional parameters or keywords are enclosed by { and } 
C items to be substituted according to the specific application are enclosed by < and >
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7Or only 500 on the IBM AIX operating system

Job Structure

MX has been written for multiple groups, since genetically informative data generally
comprise information on different types of relatives which form distinct groups. At the
beginning of an MX script, you have to say how many groups there are with a #Ngroup
statement.  A group begins with a title line that contains from 1 to 1200 characters7 for
reference.  The second line is the Group-type line, and the group ends with an Output line.
What happens in between varies according to what type of group it is.  Currently there are
3 types:

C DATA - containing data to be analyzed

C CALCULATION - allowing matrix operations for output or to simplify structure

C CONSTRAINT - for non-linear equality and inequality constraints between parameters

Any number of each type of group can be specified, in any order. Unless one of the
keywords Constraint or Calculation appears on the data line, MX expects to read a Data
group.  Effectively, there are 3 things to do: 

C Supply the data

C Describe the model

C Request options

To do this, the input script will consist of groups, each having the following structure:

1. TITLE

2. DATA: indicate group type: data/calculation/constraint

3. Read and select any observed data, supply labels

4. MATRICES: declare at least one matrix

5. Specify numbers and parameters, starting values, equality constraints

6. MODEL: define matrix formula: covariance/means/threshold/compute

7. Request fit functions, statistical output and optimization options, multiple fit mode, save

matrices and job specification

8. END command

Steps 1-3 supply data and are described in Section 3.1-3.5, steps 4-6 define the model
(Section 4.1-4.6), and steps 7-8 requests output (Section 5.1-5.4).  Constraint and calculation
groups do not read any data, so they omit step 3.
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Single Group Example

For example, an input file may look like this:

#Ngroups 1
Simple MX example file 
 Data NObservations=150 NInput_variables=2 
 CMatrix 1.2 .8 1.3 
 Begin Matrices;
  A Full 2 1 
  D Diag 2 2 
 End Matrices;
 Specification A 
  1 2 
 Specification D 
  0 3 
 Start .5 all
 Covariance_model A*A' + D / 
 Options RSiduals
End

This would fit, by maximum likelihood (the default) a factor model to a covariance matrix
calculated from 150 observations of two variables.  The model is shown as a path diagram
in Figure 3.1.  Details of this example will be found in the following sections. 

Figure 3.1 Factor model for two variables. Free parameters are indicated by x, y and
z.  Causal paths are shown as single headed arrows and correlational paths are shown as
double-headed arrows.
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#Define Command

Syntax:
#define <name> <number>
#define <$name> <string>

Number Substitution

Various commands and keywords used in MX scripts search for a number.  During this
search, if MX encounters a letter it will read the word and check the dictionary for matching
#define’d words.  If the word is found, the appropriate number is substituted.  If it hasn't, a
warning will be printed and the search for a number or a #define’d variable will continue.
Care is needed with spelling!

In multivariate modeling it is quite common that the same matrix dimensions are used in
many different parts of a script.  For example, in an oblique factor analysis, with 10
observed variables and 2 factors, the dimensions of the matrices needed to define the model
are dictated by these numbers.  If matrix L contains the loadings, P the correlations between
the loadings,  and matrix E the residuals, we would require L to be of order 10×2, P to be
2×2 and E to be of order 10×10.  We might specify this in MX with a script of the form

Title - factor analysis
 Data NInput=10 NObservations=100
 CMatrix File=mydata.cov
 Matrices
  A Full 10 2 Free
  P Stan 2 2 Free
  E Diag 10 10 Free
 Covariance A*P*A' + E /
 Start .5 all
End

However, this script could be made more general with a couple of #define statements:

#define factors 2
#define vars 10
Title - factor analysis
 Data NInput=vars NObservations=100
 CMatrix File=mydata.cov
 Matrices
  A Full vars factors Free
  P Stan factors factors Free
  E Diag vars vars Free
 Covariance A*P*A' + E /
 Start .5 all
End

Gain is small in this simple model - we change two numbers to change the number of factors
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and number of observed variables, instead of seven.  With more complex models, the use
of #define can make scripts much simpler and more versatile.

String Substitution

If the word following the #define command begins with a $, the rest of the line (or up to a
comment character ‘!') is taken to be the value of the #define’d variable.  This type of
substitution is especially useful because it literally changes the input line.  For example, if
the command 

#Define $var BMI

is followed by the command 

Select $var -T1 $var -T2 ;

then the line will become

Select BMI-T1 BMI-T2 ;

Note how the substitution has omitted the space character following $var in the input line.
If a space character is required following a string variable, two spaces should be used in the
input.  To append the contents of a string variable to a command, it is simply a matter of
entering the string variable name at the relevant position, for example, if $var is #define’d
as 4 the command:

Rectangular file=myfile$var.rec

will become

Rectangular file=myfile4.rec

Automatic #define

Two commands automatically #define variables.  First, if the #repeat command (see page
xx) is used, two variables are automatically defined as the number of the current repeat.
Repeat_number is #defined as a numeric value, and $Repeat_number is a character string
of the repeat number in question.  These features facilitate the use of the repeat number in
scripts, for example to read in different input files or to change the number of factors in a
model.  

Second, if the Definition command is used in raw data analysis, any definition variables are
automatically #define’d as -1, -2 etc. (corresponding to their position in the Definition
command line) to simplify specification of matrices with definition variables.  Therefore,
syntax of the form:

Definition age sex ;
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followed later in the script by a matrix specification command:

Specify C age sex 

would appropriately specify C as having ‘parameters’ -1 and -2 which correspond to the
definition variables Age and Sex.

#If, #Elseif, #Else and #Endif Commands

Syntax:
#if <condition>
#elseif <condition>
#else
#endif

Conditional compilation of parts of MX scripts is enabled through the #if, #elseif, #else
and #endif commands.  The <condition> part of the command uses variables that have been
#define’d as either strings (e.g. #define $model Onefac) or as numeric values (such as
#define nvar 3).  Tests of numeric conditions may be =, >, or <, which may be optionally
preceded by ^ to indicate not equal, not greater than (which is equivalent to less than or
equal to).  For example, the following code might be used to declare matrices differently
according to the type of model required:

#if $model = orthogonal
S identity nfac nfac
#elseif $model = oblique
S symmetric nfac nfac
#else
Oops! Error: $model must be #defined as either orthogonal or oblique
#endif

Note the the #if command needs to be accompanied by an #endif command and that the
condition operators have a space before and after them.  Commands of this type make it
possible to write MX script ‘templates’ which contain code normally created by the more
advanced user and which does not change from one use to the next, along with a ‘header’
file which the less advanced user can readily edit using the MX GUI MXProject-Header Edit
menu system.  An example script pair of this sort is described on page 150.

#Repeat Command

Syntax:
#repeat <number>
#endrepeat

The #repeat command is normally used to read and execute the same script segment several
times.  Although doing so might seem futile, it is possible that the script contains elements
that change each time the program is run.  One example would be where a System command
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is executed in a script - perhaps to simulate data with an external program which changes
the input data for the MX script.  A second example is where the automatically #define’d
variables $repeat_number and repeat_number, are used to make the script to read different
data files on successive runs.  Third, the $repeat_number variable might be used in
combination with a conditional statements (see above)  e.g.,  

#if repeat_number = 1
! Lines of Mx script to be used the first iteration go here
#elseif repeat_number = 2
! Lines of Mx script to be used the second iteration go here
#else
Lines of Mx script to be used for iterations 3 onwards go here
#endif

Note that the #repeat command needs to be accompanied by an #endrepeat command in the
same file and not in a #include file.  Also note that the #define, #if and #repeat commands
can be used anywhere in a script.  An example script using the #if and #repeat commands
is described on page 146.

System Command

Syntax:
System <commands to be executed>

The System command allows the MX script to execute external programs by calling the
system.  Under unix, the external programs will be run with the user's default shell.  This
command can be useful to manipulate data between stacked problems, e.g., reformatting
data output by the first job in a file so that it can be read by the second job in that file.
Another use would be to have an external program that simulates data, and to call the system
to simulate data prior to running an MX script that uses these data.  In conjunction with the
#repeat command, multiple simulations could be run.  For example,

#repeat 200
System runsim
Title Mx script to fit model to simulated data
! rest of job goes here
End
#end repeat

would run an external program called runsim (under DOS/windows this could be a batch
file, or under unix it might be a shell program) and then run the MX script, and repeat this
exercise 200 times.
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Matrices Declaration

Syntax:
Begin Matrices; or Matrices= {Group <n>}
<matrix name> <type> <r> <c> {Free/ Unique}
....
End Matrices;

Matrices must be declared after reading any data for the group, and before assigning values
or parameters to matrix elements.  All declared matrices initially have zero for each
‘modifiable’ element.  By default, all matrix elements are fixed.  If the keyword Free
appears, each modifiable element has a free parameter specified, starting at the highest
parameter number yet specified below 10,000.  If the keyword Unique is present parameters
are numbered from 10,000 onwards.  Unique helps to keep parameters from accidentally
being constrained with subsequent specify statements.  See page ? for more details on
declaring matrices.

Matrix Algebra

Syntax:
Begin Algebra;
<matrix name> = {funct} <matrix name> {operator <matrix name> };
...
End Algebra;

Algebra sections provide a simple way to evaluate matrix algebra expressions, as shown in
Appendix C.

In many cases breaking up a complicated matrix algebra expression into smaller parts can
improve readability or efficiency or both.  For example, the matrix formula
(I-A)~*S*(I-A)~' will find the inverse of twice.  When matrix A is small the loss of
efficiency will be negligible - the extra time taken to re-program will be greater than any
gained in execution time.  For large A, the component (I-A)-1 can be computed as an
intermediate step so that the cpu-intensive matrix inversion is only carried out once and we
have a compact and readable script.  Algebra may be thought of as a special form o f matrix
declaration.  Each matrix that appears on the left hand side of the = sign is newly defined
in this group (it must not have been previously defined).  Note that matrix B, defined in the
first line of algebra, may be used in subsequent lines.
Begin Matrices;
 A Full 10 10
 S Symm 10 10
 I Iden 10 10
End Matrices;
Begin Algebra;
 B = (I-A)~ ;
 C = B*S*B' ;
End Algebra; 
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3.2 Group Types

Every group has to begin with a Title line and a Group-type command.  In a data group,
these statements may be followed by reading of data.  These commands are described in this
section.

Title Line

The title line is purely for the user's reference, it is printed when MX prints the parameter
specifications and the parameter estimates for a group.  It is most useful when there are
multiple groups.  The title line is recognized by its location (the beginning of a group) rather
than by a keyword at the start of a line.

Group-type Line

Syntax: 
Data/Calculation/Constraint {NGroups=n NInput_vars=n NObservations=n}
where Calculation defines a calculation group and Constraint a constraint group, the
default being a Data group

Every group must have a data line. It has a number of parameters to indicate

i. what kind of group is being input
ii. if it is the first group, NGroups, the number of groups, and
iii. various characteristics (the number of input variables NInput_vars and the number of

observations NObservations) of the data to be analyzed, if any.

The parameters may be specified in any order, and are summarized in Table 3.2.  Note that
Data groups must have NInput_vars and NObservations keywords.  Constraint groups only
require NInput_vars, and Calculation groups need no parameters except NGroups if it is the
first group.

Table 3.2 Parameters of the group-type line in MX input files.

Parameter Function Required for group(s)

Data
Calculation
Constraint
NGroups
NInput_vars
Nobservations
Nmodel

Specifies a data group
Specifies a calculation group
Specifies a constraint group
Number of groups
Number of input variables
Number of observations
Number of models

Data
Calculation
Constraint
First group
Data, constraint
Data
Weighted likelihood*

* required for fitting mixture models only, see section 4.3 on page 76
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p'k (k%1) /2

q'k (k&1) /2.

3.3 Commands for Reading Data

Covariance and Correlation Matrices

Syntax:
CMatrix/KMatrix/PMatrix {Full} {File=filename}

In a data group, a covariance matrix may be read using the keyword CMatrix.  By default,
CMatrix expects to read the lower triangle of an NInput_vars x NInput_vars matrix, from
the input file.  If the keyword Full appears, then a full matrix will be read.  The matrix is
read in free format, that is, the numbers are expected to be separated by one or more blank
spaces or carriage returns.  If the keyword File appears, then MX will read the data from 
a file.  This latter method is generally to be preferred, since it keeps the data in one place.
If the data are changed, it is not necessary to change every script that uses these data.

A FORTRAN format [in parentheses, e.g., (6F10.5)] for reading data must be the first line
of a data file.  If the first line just has * or (*) on it, the data are read in free format, i.e.
numbers are separated by one or more spaces or new line characters.

O Correlation matrices (KMatrix) and matrices of polychoric or polyserial correlations
(PMatrix) are read in the same way as covariance matrices (CMatrix).  Although the diagonal
elements of these matrices are all 1.0, and could in principle be omitted, they are needed for
MX to read the file correctly.  See page 126 for an example of special methods required for
maximum likelihood analysis of correlation matrices.

Asymptotic Variances and Covariances

Syntax:
ACov/AVar/AInv {File=filename}

In order to use asymptotic weighted least squares or diagonally weighted least squares ( see
p. 85) it is necessary to read a weight matrix.  For compatibility with PRELIS (Jöreskog &
Sörbom, 1986; 1993), MX expects to receive a weight matrix multiplied by the number of
observations.  If the File= option is used, a PRELIS output file  (created with the
SA=filename or the SV=filename PRELIS commands) may be read. By default, MX expects
to receive an asymptotic weight matrix (ACov) whose size depends on (i) NInput_vars and
(ii) whether a correlation matrix or covariance matrix has been input.  If NInput_vars=k, then
if CMatrix has been input, the number of rows in ACov is

or if PMatrix or KMatrix have been input, the number of rows in ACov is

The weight matrices can thus be very large - of order
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p (p%1) /2 or q (q%1) /2

If you  use PRELIS, please be sure to use PRELIS 2 instead of PRELIS 1, as the
off-diagonal elements of the asymptotic weight matrices produced by PRELIS 1 appear quite
inaccurate at the time of writing (PRELIS 1.20 and earlier).  Later versions of PRELIS
output the file in binary format, which must be changed with the bintoasc.exe or
bintoggl.exe utility supplied with PRELIS.

An ACov line makes AWLS the default method of estimation for that group.  If AWLS is
requested on the Options line in a group without an ACov, and error will result.  Similarly,
DWLS is default if AVar is read. 

O Note that inverting the asymptotic covariance matrix can take an appreciable amount of time
for large problems.  Two facilities are available to combat this problem.  First, the inverse
of the matrix can be read instead.  A simple MX job could be used to invert and save the
inverse, for example:

Commands to invert a 325x325 asymptotic weight matrix  
 Data Calculate NGroups=1  
 Matrices 
  P Symm 325 325 
 Compute  P~ / 
 Matrix P File=weight.asy 
Output MX%E=weight.inv

The inverse of the asymptotic matrix (AInv), saved in the file weight.inv could be used in
place of the matrix itself, with a command of the form: AInv Full File=weight.inv .  The
Full keyword is essential here because MX is agnostic about the symmetry of square
matrices created in calculation groups.  It is safer to assume that it is not symmetric to
maintain consistency across applications.  The second, alternative approach is to use the
binary save feature described on page 105, which saves the whole job specifications.

A common error in reading data with CMatrix or ACov commands is to read them as full
matrices when they are stored as symmetric, or vice versa.  MX attempts to be a bit smarter
about this process.  If a user forgets to put the Full keyword on the CMatrix line, but MX

detects an MX-style data file that was saved in full format, it will read it as full instead.

Variable Length, Rectangular and Ordinal Files

Syntax:
VLength/Rectangular/Ordinal {File=filename} {Highest <numlist>}

MX will read two types of raw data for multivariate normal maximum likelihood analysis.
Rectangular reads regular data, i.e. where every observation has the same number of input
variables (NInput_vars on the Data line).  Missing values may be specified with a . (dot) or
another code (see Missing command on page 51).  This is appropriate if there are relatively
few missing data, or if missing data have been imputed.
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VLength is a variable length record reader, which allows reading of raw data where there
may be many missing values.  The default (and mandatory) format for these data is free.  A
line with comments or * can be placed at the start of the file, but it will be ignored by MX

except for printing a warning and the line itself in the output file.  The structure of a VLength
file is:
C number of input variables (k)
C identification codes for the k variables
C observed data for the k variables.

For every case, the number of input variables must be on a line by itself.  The identification
codes must be integers that correspond to codes read by the ICodes command (see page 83).
For example, a file might contain the following: 
3 
1 2 3 .33 .62 .95 
2 
2 3 1.4 -2.2 
1 
2 .37

This example reads 3 variables for the first observation, with identification codes 1 2 3, and
data values .33 .62 and .95.  The second observation has no data for variable 1, but supplies
data for 2 and 3, while the third supplies data for variable 2 alone.  By default, data of this
type are fitted using the raw maximum likelihood fit function (see page 88).

It is quite simple to prepare VLength files with SAS or SPSS.  However, caution should be
exercised with SAS which uses a . for a missing value.  Depending on the operating system
under which you are running MX, this dot may produce a file read error or be read as a zero.
Here are a few lines of SAS code to output a VLength file from an array of two variables
V{2}, either or both of which may be missing.  The third and fourth lines need to be modified
to declare the length of the array and to copy the required variables to the array into it.
Certain applications may also need to change the format of the PUT statement that writes the
data values.

DATA ONE; SET ZERO; 
COUNT=0; NVAR=2;                /*  Number of variables in total !!Change!! */
ARRAY V{2} AT1 AT2;             /*  Set up array for variables   !!Change!! */
DO I=1 TO NVAR;                 /*  Count the non-missing observations */  
IF V{I} NE . THEN DO; COUNT+1; END; END; 
FILE MXVLFILE;                  /* Filename for future Mx input !!Change!! */ 
IF COUNT NE 0 THEN DO;          /* Write observations if there are any */  
PUT COUNT;  
DO I=1 TO NVAR; 
IF V{I} NE . THEN PUT I @@;              /* Write the identifiers */  
END;  PUT;  
DO I=1 TO NVAR; 
IF V{I} NE . THEN PUT V{I} 13.6 +1 @@;   /* Write the data values */  
END;  PUT; 
END;
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Note: format statements are not valid for either rectangular or VL files.

Similar to the rectangular command to read raw continuous data, the Ordinal file statement
reads in ordinal data from a rectangular file.  By default, a . (dot) character separated by
spaces is recognized as a missing value, and this default may be changed by inserting a
Missing command before the Ordinal statement.  Ordinal data must be specified by integer
categories, with the lowest category zero.  The highest category in the ordinal data is
automatically detected by MX, but in some cases, especially multigroup analyses, it is
necessary to override this default with a user specified value.  The largest value in the data
file must not exceed the corresponding value in the highest statement. 

Missing Command

Syntax:
Missing=<code>

The missing command may be used to supply a character string other than . (dot) to be used
for missing values, e.g. Missing=N/A.  Note that MX responds to the exact character string,
and not the numerical value of that string.  For example, if Missing=-1.0 has been specified,
then neither -1 nor -1.00 would be recognized as missing.

Definition Variables

Syntax:
Definition_variable <label>
...
Specification <matrix name> {element list} label {element list}

This feature allows ‘multilevel’ statistical analyses with VL or rectangular data files.
Essentially, some variables may be assigned as definition variables which can then be used
in constructing the model. Definition variables are automatically #define’d so that their
names can be used in Specify statements.  A matrix containing a definition variable changes
for every case in the raw data file.  See page 139 for an example that allows continuous
moderators - effectively as many groups as there are cases in the data file.  Labels should
be provided for all variables before using the definition statement. 

Contingency Tables

Syntax:
CTable <r> <c> {File=filename}

MX will read contingency tables of order r by c.  NInput_vars must be 2 for a group reading
a contingency table.  Both r and c must be greater than 1 but they do not have to be equal.
A contingency table contains frequency data (or counts) such that each cell Cij indicates the
number of observations falling in row category i and column category j.  Normally, the
frequencies supplied should be greater than or equal to zero.  
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O
If frequency data are read directly into the script, they need to start on a new line, following
the CTable <r> <c> line.

MX automatically handles incomplete  ascertainment which the user can flag by supplying
a negative number for cells that have not been ascertained (see example on p. 92).  Instead
of modeling means, the placement of thresholds on the underlying liability distribution is
specified with the threshold statement, as shown on page 75.

The ordering of the categories should follow the natural numbering of the rows and
columns, so that a table with a strong positive correlation between the variables would have
large frequencies on the leading diagonal. Supplying a CTable changes the default fit
function to the likelihood of observing the frequencies assuming a bivariate normal
distribution of liability underlies the observed presence in a cell.  See page 91 for details on
fitting structural equation models to contingency table data.

Means

Syntax:
Means {File=filename}

A vector of means, length NInput_vars may be read.  When fitting models by maximum
likelihood, a matrix formula for the predicted means may be provided.  The joint likelihood
of the means and the covariances is maximized, enabling tests of hypotheses about equality
of means across variables or across groups. 

Higher Moment Matrices

Syntax:
Skewness/Kurtosis {File=filename}

Matrices of skewness and kurtosis may be read with these commands.  These are provided
for future developments in MX that will allow model fitting to these types of data in addition
to means and covariances.  Currently there is no facility to use matrices read in this way.
However, model fitting with higher moments could be done with user-defined fit functions
(see page 92).

3.4 Label and Select Variables

Labeling Input Variables

Syntax:
Labels <list of labels> 

Labels may be given for the observed data by issuing a Label command, before the Matrices
command.  These labels may be used to select variables, for example:
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Data NGroups=1 NInput_vars=3 NObservations=171 
CMatrix File=Cov.mat 
Labels ALC1 ALC2 AGE 
Select ALC2 ALC1 /

would read the lower triangle of a 3×3 covariance matrix from the file Cov.mat, and label
the variables ALC1 ALC2 and AGE.  The variables ALC2 and ALC1 are then selected for analysis,
changing their original order.  See also page 82 for details on labeling specified matrices.

Select Variables

Syntax:
Select <numlist or varlist> /

Variables may be selected for analysis using the Select command.  The command may be
used to reorder data or to pick a reduced number of variables for analysis. In either case, a
; or / must end the command.  Select accepts integers which correspond to the order of the
input variable.  More conveniently, Select will operate on variable labels (see page 52).
The command will work with raw data as supplied by the Rawdata or VLength commands
(see pages 88 and 49). 

Select If

Syntax:
Select If <label> {<  =  >  ^<  ^=  ^>} value/ 
where ^ denotes not.

Select If may be used in conjunction with raw data (VL or Rectangular) to select a subset of
the data for analysis.  This feature is useful to eliminate outliers form a raw dataset, if a case
number or id variable has been included.  For example,

Rectangular File=mydata.rec
Labels casenum BMI skinfold1 skinfold2;
Select If casenum ^=253;
Select BMI skinfold1;
might be used to eliminate all cases where casenumber is 253.

Select with Variable Length Data
In combination with the VL or rectangular data, select changes the identification codes to
consecutive integers starting at 1.  For example, if the following Select line was read:
Select 3 4 2 /
a VLength record of the form: 
4 
1 2 3 4 .1 .2 .3 .4
would be changed to: 
3 
1 2 3 .3 .4 .2 
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thus the observation originally numbered 3 has become observation 1, observation numbered
4 has become observation 2, and observation numbered 2 has become observation 3.  Select
will automatically reduce the number of data vectors if there are no matches for a particular
data vector and the codes in the Select line.  The final number of vectors and observations
used in the analysis is given in the output file.

Select  cannot contain more numbers than the NInput_vars specified on the Data line.  To
do so would necessarily result in a singular correlation or covariance matrix.  Likewise, the
same variable cannot be selected twice.

3.5 Calculation and Constraint Groups

The use of calculation and constraint groups is very similar the use of groups that read data.
All three types of group are fully command compatible with the exception of commands for
reading data, which can be used by data groups alone.

Calculation Groups

The keyword Calc on the Group-type line indicates that the group is used for calculation.
The calculated matrix formula from such a group is printed if the RSiduals command
appears on the Options line.  There are no restrictions on the type and dimensions of a
matrix than can be produced with this command (other than memory limits). The result of
the calculation may be used in later groups by using the =%En syntax when specifying a
matrix, where n is the number of the calculation group.  Note that there is a strict ordering
within the input file; results cannot be taken from a calculation that has not yet occurred.

@ The Calc group provides a facility for printing out results of matrix operations.  Any
calculation group that is not followed by a constraint or data group is not calculated until
the end of optimization, thus avoiding unnecessary waste of computer time.

Constraint Groups

Constraint groups may be used to impose nonlinear equality or inequality constraints among
the parameters.  Three special operators may be used to impose constraints between
matrices.  For example, suppose we wish to impose the constraint that x2+y2 =1  where x has
parameter specification 1 and y has parameter specification 2.  A constraint group to
accomplish this might be:

Constrain parameters to ensure that x*x+y*y=1
 Constraint_group
 Begin Matrices;
  A Full 2 1
  I Iden 1 1
 End Matrices;
 Specify A 1 2 ! Put parameters 1 and 2 in to A
 Constraint A’*A=I; !Inner product works out x*x+y*y
End Group;
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If we wanted to impose the inequality constraint that x2+y2 >1 instead, then we would use
the > symbol in the Constraint statement. Likewise, we could use < to specify a less than
inequality.  Only one <, > or = symbol may be used in a constraint statement.  To specify
range constraints such as .5< x2+y2 <1 it is possible to specify both constraints within the
same constraint statement by concatenating them as two inequality constraints:
Constrain parameters to ensure that .5 < x*x+y*y <1
 Constraint_group
 Begin Matrices;
  A Full 2 1
  I Iden 1 1
  H Full 1 1
 End Matrices;

 Matrix H .5
 Specify A 1 2  ! put parameters 1 and 2 into A

 Constraint (A’*A_
                H) < (I_
                      A’*A);  ! Inner product works out x*x+y*y
End Group;

Note that the constraints are made element by element.  Using option RS we can see the
results of imposing equality or inequality constraints.

Whenever MX encounters a constraint group, it increases the number of degrees of freedom
by the number of nonlinear constraints.  This increase in the number of statistics  is based
on the assumption that each constraint identifies a parameter, which may not always be
correct.  The DF parameter on the Options line (see page 95) may be used to correct for
failures of this assumption.

NPSOL, the optimization routine, treats constraints in an intelligent fashion; if it finds the
derivatives of the constraint functions with respect to certain parameters to be zero, it does
not calculate them during optimization.  This means that if some of the specified constraint
functions are always zero, little additional computational cost is incurred.  

. Care is needed to make sure that the constraints can be satisfied.  If there is no feasible point
for the constraints - for example, one of them always takes the value .5 - an IFAIL=3 error
message is returned.  One way to avoid such errors is to start optimization at a place where
the constraints are satisfied.
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4 Building Models with Matrices
What you will find in this chapter

# How to declare matrices and label them
# The structure of the different types of matrix
# What the matrix operators and functions do
# When and where to use matrix formulae
# The role of different types of group

All groups, be they constraint, calculation, or data, require at least one matrix in order to do
anything.  The next few sections describe the types of matrix that may be used, the operators
that act on and between them, and ways of putting parameters and numbers into them.

4.1 Commands for Declaring Matrices

Matrices Command

Syntax:
Begin Matrices {= Group <n>};
<matrix name> <type> <rows> <columns> {= <name> <group> / Free, Unique}  
....
<matrix name> <type> <rows> <columns> {= <name> <group> / Free, Unique}
End Matrices;
where n is a previous group number

A group must have the 3-letter MAT command, followed by at least one matrix definition. 
As used throughout this manual, we recommend using non-abbreviated commands, such as
Matrices.  

Matrix names are restricted to one letter, from A to Z.  The same letter may be used for
different matrices in different groups.  If a matrix is declared twice, a warning is printed and
only the second declaration is kept.

O Note that matrix definitions are group specific; for example, matrix A in group 1 does not
have to be the same type or size as matrix A in group 2. 

If the keyword = follows the Begin Matrices command, all matrices in that earlier group are
automatically declared in the present group.
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Matrix Types

The type of a matrix may be one of the 12 forms described in Table 4.1, and its row and
column dimensions are specified with  integers.  Once the type and size of a matrix has been
defined, it cannot be changed.  

Table 4.1 Matrix types that may be specified in MX.

Type Structure Shape Number of
Free Elements

Zero
Unit
Iden
IZero
ZIden
Diag
SDiag
Stand
Symm
Lower
Full
Computed

Every element is zero (null matrix)
Every element is one (unit matrix
Identity matrix
Identity|Zero partitioned matrix
Zero|Identity partitioned matrix
Diagonal matrix
Subdiagonal (zeros on & above diagonal)
Standardized (symmetric, ones on diagonal)
Symmetric
Lower triangular
Full
Equated to formula in previous group

Any
Any
Square
Any
Any
Square
Square
Square
Square
Square
Any
Any

0
0
0
0
0
r
r(r!1)/2
r(r!1)/2
r(r+1)/2
r(r+1)/2
r×c
0

Note: number of free elements indicates the number of elements that can be altered by the
user, where r is the number of rows and c the number of columns of the matrix.

Equating Matrices across Groups

Syntax:
<matrix name> <type> <r> <c> = <matrix name> <group number>
or
<matrix name> <type> <r> <c> = <special quantity> <group number>

Optionally, a matrix may be constrained to equal a matrix previously specified.  For
example, we could use the command 
A Symm 3 3 = Y2 
to equate matrix A in this group to matrix Y in group 2.  In this example the current group
must be number 3 or greater.  

Several additional options allow constraints to other quantities found in previous groups,
such as the observed or expected covariance matrix.  For example, the command
B Full 2 2 = %E1
equates matrix B in this group to the expected matrix of group 1.

The special codes for constraining a matrix to equal those defined or computed in previous
groups are shown in Table 4.2.  These add to the flexibility of MX.
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Table 4.2 Syntax for constraining matrices to special quantities in previous groups.

Symbol Matrix Quantity Dimensions

%On
%En
%Mn
%Pn
%Fn

Observed covariance (data) matrix
Expected covariance matrix
Expected mean vector
Expected proportions under bivariate normal
Function value

NIn×NIn

NIn×NIn

1×NIn

NRn×NCn

1×1

Note: NIn is the number of input variables in group n following any selection; NR and NC
are respectively the number of rows and columns in a contingency table, and may be
requested only if group n has such a table.

It is especially important to note that none of the %E, %O, %M, %F and %P equalities may refer
to groups that appear after the current group.  When matrices are constrained to be equal
in this fashion, the type and row × column dimensions of the earlier matrix are retained.  If
the two specifications do not agree, a warning is printed.  Both the number of rows and the
number of columns must be supplied for square matrices, but only the first is used to define
the size of the matrix.

Equating Matrices to Computed Matrices

Syntax:
<matrix name> computed {<r> <c>} = <matrix name> <group number>

When matrices are declared with the Matrices command, a special type, computed, may be
used to equate to a matrix which was defined within the algebra section of a previous group.
Row and column dimensions are set to those of the previously calculated matrix, and may
be omitted when declaring a matrix as computed.

Equating All Matrices across Groups

Syntax:
Begin Matrices = Group <number>;

The usual equating of matrices across groups is supplemented by a global facility.  All the
matrices defined in an earlier group are made available to the current group.  This includes
both matrices that are explicitly declared and those that are created in a Begin Algebra;
...End Algebra; section.

Free Keyword

All changeable elements of matrices are initialized at zero and are fixed parameters, unless
the Free keyword is used, in which case each changeable element is specified as a different
free parameter. Examples of the results of using the keyword Free are shown in Table 4.3.
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Table 4.3 Examples of use of the Matrices command to specify the dimensions of
different matrix types.  The keyword Free following each command makes each modifiable
element in the matrix a separate free parameter, numbered in order as shown in the second
column.  In the third column, values of elements are shown, with ? representing a free
parameter.

Example command Specification
Matrix

Values

A Zero 2 3 Free 0 0 0
0 0 0

0 0 0
0 0 0

B Unit 2 3 Free 0 0 0
0 0 0

1 1 1
1 1 1

C Iden 3 3 Free 0 0 0
0 0 0
0 0 0

1 0 0
0 1 0
0 0 1

D Izero 2 5 Free 0 0 0 0 0
0 0 0 0 0

1 0 0 0 0
0 1 0 0 0

E Ziden 2 5 Free 0 0 0 0 0
0 0 0 0 0

0 0 0 1 0
0 0 0 0 1

F Diag 3 3 Free 1 0 0
0 2 0
0 0 3

? 0 0
0 ? 0
0 0 ?

G Sdiag 3 3 Free 0 0 0
1 0 0
2 3 0

0 0 0
? 0 0
? ? 0

H Stand 3 3 Free 0 1 2
1 0 3
2 3 0

1 ? ?
? 1 ?
? ? 1

I Symm 3 3 Free 1 2 4
2 3 5
4 5 6

? ? ?
? ? ?
? ? ?

J Lower 3 3 Free 1 0 0
2 3 0
4 5 6

? 0 0
? ? 0
? ? ?

K Full 2 4 Free 1 2 3 4
5 6 7 8

? ? ? ?
? ? ? ?

More detail on specifying parameters in matrices is given in Sections 4.4 to 4.5.
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4.2 Building Matrix Formulae

Readers unfamiliar with matrix algebra may benefit from reading Appendix C, where
examples and exercises are given.  Readers familiar with matrix algebra may wish to
examine Tables 4.4 and 4.5 for the variety of available operators and functions, and use this
section for reference.

Matrix Operations

In ordinary algebra, operators such as + !× and ÷ have an order of evaluation established
by convention.  Multiply and divide are done before addition and subtraction.  Multiply and
divide are done in left-to-right order if they appear consecutively, as are addition and
subtraction.  We could say then, that × and ÷ have priority 1, and + and ! have priority 2.
Default priorities can be changed with the use of brackets ( ) which specify that operations
inside the brackets are done first.  For example, a+b×c=a+bc whereas (a+b)×c= ac+bc.

A similar hierarchy has been established for the matrix operators in MX, and it too may be
revised by the use of brackets.  Table 4.4 shows the matrix operators and their (default)
order of evaluation.  Matrix algebra is subject to certain rules of conformability -
requirements about the size and shape of the matrices being multiplied etc.  These rules are
listed in the right hand column of table 4, where  denotes rows in matrix A and rA cB
columns in matrix B.  The number or rows of a matrix ( ) and the number of columns ofrA
a matrix ( ) are known as its dimensions.  Two matrices A and B where rA=rB and cA=cBcA
are said to have the same dimensions.

Table 4.4 Matrix operators available in MX, together with their priority for evaluation.
See also Table 4.5 for matrix functions.

Symbol Name Function Example Priority Conformability
~

N
Inverse
Transpose

Inversion
Transposition

A~

AN
1
1

r=c
none

^
*
.
@
&
%
+
!
|
_

Power
Star
Dot
Kron
Quadratic
Eldiv
Plus
Minus
Bar
Under

Element powering
Multiplication
Dot product
Kronecker product
Quadratic product
Element division
Addition
Subtraction
Horizontal adhesion
Vertical adhesion

A^B
A*B
A.B
A@B
A&B
A%B
A+B
A!B
A|B
A_B

2
3
3
3
3
3
4
4
4
4

none
cA=rB

rA=rB and cA=cB

none
cA=rB=cB

rA=rB and cA=cB

rA=rB and cA=cB

rA=rB and cA=cB

rA=rB

cA=cB

A line has been drawn between the first two operators (Inverse & Transpose) and the rest
because inverse and transpose are unary operators, that is, they operate on one matrix.  The
rest form a single new matrix from two matrices, and are thus binary operators.  These
operators are now described in detail. 
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a b

c d

e f

^
g h

i j
'

a g a h b g b h

a i a j b i b j

c g c h d g d h

c i c j d i d j

e g e h f g f h

e i e j f i f j

a b

c d

e f

(
g h

i j
'

a×g % b× i a×h % b× j

c×g % d× i c×h % d× j

e×g % f× i e×h % f× j

'

ag % bi ah % bj

cg % di ch % dj

ge % fi eh % fj

Inverse ~

Only square matrices may be inverted, but they may be either symmetric or non-symmetric.
The inverse of matrix A is usually written A!!1 and implies that AA!!1 = A!!1 A = I where I
is the identity matrix.  To request an inverse with MX, we use the symbol ~.  If the inverse
does not exist (possibly due to rounding errors), MX will terminate with an error message.
Some precautions can be taken to avoid this, such as supplying starting values that allow
inversion, or putting boundary constraints on parameters to prevent their taking values that
would lead to a singular matrix.

Transpose NN
Any matrix may be transposed.  The transpose of A is written ANN.  The order of the matrix
changes from r×c to c×r, as the rows become the columns and vice-versa.

Power ^
All the elements of a matrix may be raised to a power using the ̂  symbol.  Essentially, this
operator works the same way as the Kronecker product (see below), but elements of the first
matrix are raised to the power of those in the second matrix instead of multiplied by them.
It is possible to use negative powers and non-integer exponents to indicate reciprocal
functions and roots of elements, but it is not possible to raise a negative number to a
non-integer power.  For example, the cube of every element of a matrix would be obtained
by A^B if B was a 1×1 matrix with 3 as its only element.

For example, the matrix power A^B is 

Multiplication *
* or ‘Star’ is the ordinary form of matrix multiplication.  The elements of A(m×n) and
B(n×p) are combined to form the elements of matrix C(m×p) using the formula 

.  Matrices multiplied in this way must be conformable forCij ' Ón
k'1 Aik×Bkj

multiplication.  This means that the number of columns in the first matrix must equal the
number of rows in the second matrix. 

For example, the matrix product A*B
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a b

c d

e f

.

g h

i j

k l

'

a×g b×h

c× i d× j

e×k f× l

a b

c d

e f

q
g h

i j
'

a×g a×h b×g b×h

a× i a× j b× i b× j

c×g c×h d×g d×h

c× i c× j d× i d× j

e×g e×h f×g f×h

e× i e× j f× i f× j

a b (
g h

i j
(

a

b
' a 2g%abi%abh%b 2i

Dot product  .
Dot is another type of matrix multiplication, which is done element by element.  For two
matrices to be multiplied in this way, they must have the same dimensions.  Elements of the
dot product are described by the formula Cij = Aij×Dij.

For example, the dot product A.D is 

Kronecker product qq
The right Kronecker product of two matrices A qq B is formed by multiplying each element
of A by the matrix B.  If A is of order (m×n) and B is of order (p×q), then the result will be
of order mp×nq.  There are no conformability criteria for this type of product. In MX input
files the symbol q is denoted with the symbol @. 

For example, the Kronecker product A qq B is 

Quadratic product &
Many structural equation and other statistical models use quadratic products of the form
ABA’, and the quadratic operator is both a simple and efficient way to implement
quadratics.  Note that E can be any shape, but to be conformable for quadratic product the
matrix B must be square and have the same number of columns as the matrix E.

For example, the quadratic product E&B
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a b

c d

e f

%

g h

i j

k l

'

a÷g b÷h

c÷ i d÷ j

e÷k f÷ l

a b

c d

e f

%

g h

i j

k l

'

a%g b%h

c% i d% j

e%k f% l

a b

c d

e f

!

g h

i j

k l

'

a!g b!h

c! i d! j

e!k f! l

Element division %
% does element by element division.  For two matrices to be divided in this way, they must
have the same dimensions.  Elements of the result, C are described by the formula
Cij = Aij ÷ Dij.  If any element of D is zero, the corresponding cell in the result matrix is set
to 1035.

For example, the division A%D is 

Addition +
Addition of matrices is performed element by element.  For two matrices to be added, they
must have the same dimensions.  Elements of the sum, C are described by the formula
Cij = Aij + Dij.

For example, the sum A+D is 

Subtraction !!
Subtraction of matrices is performed element by element.  For one matrix to be subtracted
from another, they must have the same dimensions.  Elements of the difference, C are
described by the formula Cij = Aij !! Dij.

For example, the difference A!!D is 

Note that in MX there is also a unary minus operator, so that an expression such as !!A is
legal.  This operation changes the sign of each element of A.
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a b

c d

e f

|

g h

i j

k l

'

a b g h

c d i j

e f k l

a b

c d

e f

_

g h

i j

k l

'

a b

c d

e f

g h

i j

k l

Horizontal Adhesion |
Bar allows partitioning of matrices.  Its operation is called horizontal adhesion because A|D
is formed by sticking D onto the right hand side of A.  For two matrices to be adhered in this
way, they have to have the same number of rows.  If A (m×n) and D (m×p) are adhered, the
result C is of order (m×(n+p)).

For example, the operation A|D is 

Vertical Adhesion _
Underscore allows partitioning of matrices.  Its operation is called vertical adhesion because
A_D is formed by sticking D underneath A.  For two matrices to be adhered in this way,
they must have the same number of columns.  If A (m×n) and D (p×n) are adhered, the
result C is of order ((m+p)×n).

For example, the operation A_D is 

Matrix Functions

A number of matrix functions, shown in Table 4.5, may be used in MX.  These are useful
for in specialized applications involving user-defined fitting-functions (see p. 92).
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Table 4.5 Matrix functions available in MX.  
Restrictions are on rows r and columns c of input argument.

Keyword Function Restrictions Result Dimensions

\tr( )
\det ( )
\sum( )
\prod( )
\max( )
\min( )
\abs( )
\cos( )
\cosh( )
\sin( )
\sinh( )
\tan( )
\tanh( )
\exp( )
\ln( )
\sqrt( )
\d2v( )
\v2d( )
\m2v( )
\vec( )
\vech( )
\stnd( )
\eval( )
\evec( )
\ival( )
\ivec( )
\mean()
\cov()
\pchi()
\pdfnor()
\mnor()
\momnor()
\allint()
\aorder()
\dorder()
\sortr()
\sortc()
\part()

Trace
Determinant
Sum
Product
Maximum
Minimum
Absolute value
Cosine
Hyperbolic cosine
Sin
Hyperbolic sin
Tan
Hyperbolic tan
Exponent (eA)
Natural logarithm
Square root
Diagonal to Vector
Vector to Diagonal
Matrix to Vector
Matrix to Vector*
Lower triangle to Vector
Standardize matrix
Real eigenvalues
Real eigenvectors
Imaginary eigenvalues
Imaginary eigenvectors
Mean of columns
Covariance of columns
Probability of chi-squared
Multivariate normal density
Multivariate normal integral
Moments of multivariate normal
All integrals of multinormal
Ascending sort order
Descending sort order
Row sort
Column sort
Extract part of matrix

r=c
r=c
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
r=1 or c=1
None
None
None
r=c
r=c
r=c
r=c
r=c
None
None
r=1 and c=2
r=c+2
r=c+3
r×1

r×1
None
None
None

1×1
1×1
1×1
1×1
1×1
1×1
r×c
r×c
r×c
r×c
r×c
r×c
r×c
r×c
r×c
r×c
min(r,c)×1
max(r,c)×max(r,c)
rc×1
rc×1
rc×1
r×c
r×c
r×r
r×1
r×r
1×c
c×c
1×2
1×1
1×1
r×1

r×1
r×max(1,c-1)
max(1,r-1)×c
Variable†

*vec: vectorizes by columns, in contrast to m2v, which vectorizes by rows.

† \part (A,B) takes two arguments. The elements of the 1×4 matrix B are used to define a
rectangle within matrix A to be extracted.
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Functions , called with syntax of the form \func(argument) differ from operators because
they take an argument enclosed by parentheses ().  This argument may be a single matrix
name, or a complex matrix formula.  The argument is evaluated before the function is
applied, consistent with the rules for using brackets.  Functions form a second set of unary
operators (see page 61).  Descriptions of these functions follow.

Trace \tr( )
The trace of a matrix is the sum of the elements on the leading diagonal, i.e.

It is only allowed for square matrices.

Determinant \det( )
Properties of determinants, and ways of calculating them are discussed in Appendix C.  This
function is calculated for square matrices only.

Sum \sum( )
The sum of a matrix is the sum of all its elements, i.e.,

Product \prod( )
The product function of a matrix yields the product of all its elements, i.e.,

Maximum \max( )
The maximum function of a matrix yields a 1×1 matrix containing the maximum of all its
elements.

Minimum \min( )
The minimum function of a matrix yields a 1×1 matrix containing the minimum of all its
elements.

Absolute value \abs( ) 
The abs function replaces all matrix elements with their absolute value.

Trigonometric functions \cos( ), \sin( ) etc.
These functions replace all matrix elements with their appropriate trigonometric
transformation, in radians. 
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if A '

a 0 0 0

0 b 0 0

0 0 c 0

then \d2v (A) '

a

b

c

if E ' a b c d then \v2d (E) '

a 0 0 0

0 b 0 0

0 0 c 0

0 0 0 d

if A '
a b

c d
then \m2v (A) '

a

b

c

d

Exponent \exp( )
Any matrix is a legal argument for this function which replaces each element Aij by eAij.

Natural Logarithm \ln( )
Any matrix is a legal argument for this function which replaces each element Aij by ln Aij.
If an element is less than 1×10-30 then the result is ln (1×10 -31).  Although error messages
would be more normal in such a situation, this behavior can be helpful in optimization.

Square Root \sqrt( )
Any matrix is a legal argument for this function which replaces each element Aij by .Aij
If an element is less than zero, a fatal error occurs.

Diagonal to Vector \d2v( )
The leading diagonal of any matrix is placed into a column vector with min(RbC) rows, i.e.
r or c, whichever is less. e.g.

Vector to Diagonal Matrix \v2d( )
A row or column vector is placed in the leading diagonal of a square matrix. e.g. 

Matrix to Vector \m2v( )
A matrix is placed in a column vector, by rows.  Thus

This is similar to the function \vec; which places the matrix into a vector by columns,
instead of rows. 
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if A '
a b

c d
then \vec (A) '

a

c

b

d

if A '
a b

c d
then \vech (A) '

a

c

d

if A '

a b

c d

e f

then \vech (A) '

a

c

e

d

f

A (

ij '
Aij

Aii Ajj

Matrix to Vector \vec( )
A matrix is placed in a column vector, by columns.  Thus

@
Note that it is more efficient to use \m2v(A) than \vec(A') and more efficient to use \vec(A)
than \m2v(A').  Both functions work for matrices of any shape.

Matrix to Vector \vech( )
All the elements on the diagonal and below are placed into a vector, by columns.  Thus

Like its counterparts \vec and \m2v, this function will operate on matrices of any shape,
terminating at the last row or column, whichever is the smaller.  Thus

Standardize \stnd( )
This operation converts a covariance matrix into a correlation matrix.  Replacement of
elements is made according to the formula: 

The diagonal elements of A have to be greater than zero, and A has to be square.
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Real Eigenvalues \eval( )
The real parts of the eigenvalues of a square matrix are placed in a column vector, in
ascending order of size, smallest first.

Real Eigenvectors \evec( )
The real parts of the eigenvectors of a square matrix are placed in a square matrix, where
column j contains the eigenvector corresponding to eigenvalue j, with eigenvalues sorted in
ascending order of size, smallest first (j=1).

Imaginary Eigenvalues \ival( )
The imaginary parts of the eigenvalues of a square matrix are placed in a column vector, in
ascending order of size, smallest first. 

Imaginary Eigenvectors \ivec( )
The imaginary parts of the eigenvectors of a square matrix are placed in a square matrix,
where column j contains the eigenvector corresponding to eigenvalue j, with eigenvalues
sorted in ascending order of size, smallest first (j=1).

Column Means \mean( )
This function computes the means of the columns of a matrix.

Column Covariances \cov( )
This function computes the covariance matrix of the columns of a matrix. Thus if data are
presented as one line per subject, with r rows for each of the c variables, the output would
be of order c×c.

Probability of Chi-square  \pchi(x)
Function \pchi computes the probability of a chi-squared with nu degrees of freedom.  Its
argument must be a 1x2 vector containing the chi-squared and degrees of freedom.  It returns
a 1x1 matrix.  This can be useful when writing parameter estimates and fit statistics to a file.

Multivariate Normal Density \pdfnor(A)
The function \pdfnor computes the multivariate normal probability density function (pdf)
given by the multivariate normal distribution.  In the univariate case, this is the height of the
normal curve.  Matrix A, the argument of the function, is a nvar+2×nvar matrix, containing:
(first row) a vector of observed scores xi; (second row) a vector of population means µi; and
(rows 3 to nvar+2) the population covariance matrix Ó.  The pdf is 

Multivariate Normal Integration \mnor( )
The matrix function \mnor will compute multiple integrals of the multivariate normal, up to
dimension 10.  Its input is structured so that for n dimensional integration, the matrix has
n columns and n+4 rows.  The first n rows define the covariance matrix, row n+1 defines
the mean vector, the last three are used to define the type of truncation experienced by each
variable.  This is best described with an example.  The script:
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Test multivariate normal integral function
 Data Calc NGroups=1
 Matrices
  A full 1 2 ! Upper limits
  B full 1 2 ! Lower limits
  T Full 1 2 ! Type of integral
  R Stan 2 2 ! Covariance matrix
  Z Full 1 2 ! Means
 Compute \mnor((R_Z_A_B_T)) /
 Matrix R .3
 Matrix B 0 0
 Matrix A 1 1
 Matrix T 2 2
 Option RSiduals
End

computes the integral of the bivariate normal distribution with correlation .3 from 0 to 1 in
both dimensions.  The type parameters (matrix T) are flags that indicate the type of
truncation required: 
C 0 integral from -4 to aj

C 1 integral from bj to 4
C 2 integral from aj to bj

C 3 integral from -4 to 4 (this dimension is ignored)
where aj and bj are the elements of column j of matrices a and b.

Accuracy is set to six decimals by default.  Lower precision may be set with Option
Eps=<value>  though it should be noted that this option will be treated globally, i.e., for all
such integrals in a particular run.

Moments of the Truncated Multinormal \momnor( )
The matrix function \momnor will compute moments of the truncated multinormal
distribution.  Currently, it will work only with 'tails' of the distribution, though selection may
be absent for some variables.  Here is a bivariate example:

Test moments of truncated normal function
 Data Calc NGroups=1
 Matrices
  R Symm 2 2  !covariance matrix
  M Full 1 2  !means
  T Full 1 2  !thresholds
  S Full 1 2  !selection vector
  N Full 1 2  !# of abscissae
 Compute \momnor((R_M_T_S_N)) /
 Matrix R 1 .5 1
 Matrix M 0 0
 Matrix T 1.282 1.282
 Matrix S 1 1
 Matrix N 16 16
 Option RSiduals
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End

This script requests the covariances and means of individuals selected above the threshold
1.282 in a N(0,1) bivariate normal distribution.  It returns the covariance matrix in the first
n rows, and the means in row n+1.

.
Note: this function can give incorrect results when the number of abscissae is small, or the
thresholds are extreme (more than 3 standard deviations from the mean).  CPU time will go
up with the number of abscissae, but 64 is the maximum (and it goes in jumps 16 20 24 32
48 64, along with some smaller jumps below that).  MX automatically assigns the number
of abscissae to: i) 16 if you enter 0 or less, ii) 64 if you enter 64 or more, and iii) the next
lowest value if you happen to chose an intermediate value (e.g. it will pick 24 if you enter
30).

All Intervals of the Multivariate Normal Distribution \allint()
It is often necessary to compute the probabilities of all the cells of a multivariate normal that
has been sliced by a varying number of thresholds in each dimension.  These thresholds are
more formally called hyperplanes.  While it is possible to use the \mnor function to achieve
this goal, it can be more efficient and more convenient to use the \allint function.  The
argument to the \allint function must be a matrix with as many columns as there are
variables, and with as many rows as the number of columns plus 2 plus the maximum
number of thresholds to be evaluated.  The general form is \allint(R_X_T_A) where R is the
m × m covariance matrix of m variables, X is the mean vector, T is a row vector whose
elements ti specify the number of thresholds in dimension i, and A contains the thresholds
and is of order (max(ti) × m).

\Allint returns the proportions in all the cells, cycling from lowest to highest with the last
variable in R changing most slowly.  For example, the following script:

#NGroups 1
#define nvar 2       ! number of variables
#define maxthresh 3  ! maximum number of thresholds
Test of allint function
 Calculation
 Begin Matrices;
  A symm nvar nvar
  N full 1 nvar
  X full 1 nvar
  T full maxthresh nvar
 End Matrices;
 
 Matrix A 1 0 1 ! identity matrix here
 Matrix X 0 0   ! zero means
 Matrix N 2 3   ! first dimension has 2 thresholds (3 categories), second has 3
 Matrix T
  -1.282 -2.323 ! thresholds are -1.282 and 0 for first dimension, 
       0      0 ! and are -2.323, 0 and 1.282 for second dimension
      10  1.282 !
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A '

6

1

3

would yield

3

1

2

A '

.6

.1

.3

would yield

1

3

2

 Begin Algebra;
  C = \allint(A_X_N_T) ;
 End Algebra;
End Group

will return:
   MATRIX C
 This is a computed FULL matrix of order    1 by   12
  [=\ALLINT(A_X_N_T)]
          1       2       3       4       5       6       7       8       9
 1   0.0010  0.0490  0.0400  0.0100  0.0040  0.1960  0.1601  0.0400  0.0050
         10      11      12
 1   0.2450  0.2000  0.0500
containing the desired probabilities.

Ascending Order \aorder( )
This function gets the ascending order of a column vector.  For example, \aorder(A) with

Descending order \dorder( )
This function gets the descending order of a column vector.  For example, \dorder(A) with

Sort Rows \sortr( )
Used to sort a column vector or matrix by rows.  If a vector, the vector elements themselves
are sorted.  If a matrix, the first column is taken to be the sort order - and must contain a
permutation of the integers 1 to the number of rows, as might be extracted using, e.g.,
\aorder() above.

Sort Columns \sortc( )
This function works the same way as \sortr() but by columns.

Extract Part \part(A,B)
This function extracts a rectangular sub-matrix of matrix A (formerly this was possible only
by pre- & post-multiplying by elementary matrices).  One has to be very careful to initialize
matrix B before this statement is given, because the result dimensions are needed to check
syntax.  To pre-initialize B you would use the following job structure
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Title
 Calculation NGroups=1
 Begin Matrices;
  A Symm 3 3
  B Full 4 1
 End Matrices;        !  <- End matrix definitions with this statement
 Matrix A 
  1
  2 3
  4 5 6
 Matrix B 2 1 3 3
 Compute \part(A,B) / !  <- Compute statement *after* matrix statement
 Option RSiduals
End

The format for matrix B is row, column, row, column so in this example the rectangle from
2,1 (row 2, column 1) to 3,3 will be extracted, giving
2 3 5
4 5 6

O Note that the elements of B may define any two opposite corners of a submatrix of A.  To
some extent, the \part() function is binary, but we prefer to list it with the other matrix
functions.

4.3 Using Matrix Formulae

A matrix formula is a sequence of matrix names and matrix operators terminated by a semi-
colon.  For example
A*B + \m2v(C);

Covariances, Compute Command

Syntax:
Covariances/Compute formula;

The covariance command uses the matrices specified following the Matrices command and
special symbols to perform operations or functions on or between them.  A Covariance
statement may contain a single matrix and no operations, or it could be very complex.  The
command may extend over several lines and must end in a ; or /.  Compute is the
recommended keyword for calculation groups, to make reading scripts easier for humans.

The primary method of carrying out matrix algebra is within an algebra section (see page
46).  Matrices that appear on the left hand side should not already exist in that group.

Means Command

Syntax:
Means A formula;
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The Means command operates in the same way as the Covariance command.  It exists to
facilitate the modeling of means.  All the matrix operators and functions (Section 4.2) may
be used just as when specifying a model for covariances.  A ; or / must end the command.
Currently, MX will do nothing with models for means when applying the functions LS, GLS,
AWLS, DWLS.  Only the ML, US and RM fit functions make use of models for means.

Threshold Command

Syntax:
Threshold A formula;

The Threshold command operates in the same way as the Means to specify thresholds.  It
enables modeling of thresholds when fitting to contingency table data.  All the matrix
operators and functions (Section 4.2) may be used just as when specifying a model for
covariances.  A ;or / must end the command. Threshold cannot be used with any fit function
other than contingency table ML, which is used when CTable data have been supplied (see
chapter 5).

Special restrictions apply to the dimensions of the matrix calculated in the Threshold
command.  The result must have 2 rows and must have at least d columns where d=max
((r-1),(c-1)), in other words, at least one less than the number of rows or the number of
columns in the contingency table, whichever is the greater.  The first (r-1) elements of the
first row of the matrix will contain the thresholds that separate the rows.  The first (c-1)
elements of the second row of the matrix will contain the thresholds that separate the
columns.  These elements are unstandardized row and threshold estimates, which may be
standardized by dividing by the square root of the product of the two diagonal elements of
the expected covariance matrix calculated by the Covariance or Constraint statement.  Use
of unstandardized thresholds allows the testing of models that predict differences in variance
between groups, but have equal thresholds.

O The user should take care to supply starting values for thresholds that increase from left to
right in both rows of the matrix calculated by the Threshold command.  Ideal starting values
are those that, when standardized, mark the z-scores on the normal distribution
corresponding to the cumulative frequencies of the normal distribution of the row totals
(first row of the calculated matrix) or the column totals (second row of the calculated
matrix).  For example, if the following contingency table was supplied as data:
CTable 3 2 
20 180 40
360 20 180
then appropriate starting values for 2 row thresholds would be -.67 and +.67 (z-scores
corresponding to the lower 25% and 75% of the normal distribution), and -1.28 would be
appropriate for the starting value of the column threshold (z-score corresponding to the
lower 10% of the normal distribution).  Therefore if the threshold model was simply T, we
would declare
T Full 2 2 
and use 
Matrix T -.67 .67 -1.28 0
to initialize it.
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Weight command

Syntax:
Weight <formula> ;
where formula is a legal matrix algebra formula

The fundamental assumption of fitting a model to a population is that there is only one
model.  However, the population may consist of a mixture of groups which differ in the
parameters or the entire structure of the model.  In MX, the weight command, coupled with
the Nmodel parameter, allow analysis of such mixtures when the raw data are available.
NModel controls the number of models supposed to exist in the population.  The predicted
means and covariances are simply vertically stacked in the usual matrix expression for the
means and covariances.  For example, if three variables were being studied with one model,
the predicted mean vector would be of order (1×3) and the predicted covariance matrix
would be (3×3).  If two models are being used, the predicted mean vector should be (2×3)
and the predicted covariance matrix (6×3).  MX checks that the size of the predicted
covariance and mean vectors agree with the NModel and NInput (including any changes made
with Select/Definition statements).  Weight allows modeling of the likelihood that a
particular observed vector is a member of a particular model class.  The weight matrix
expression should evaluate to a vector of order (NModel×1).  The log-likelihood for a
particular vector then becomes:

where wi is the weight, Li is the likelihood under the ith model.

Often, the weights used will reflect simple proportions, and usually Ówi = 1.  (see page 141
for an example).  Sometimes, covariates may be used to compute the weight applied to a
particular model.  An example of such weighting is quantitative trait loci analysis where the
probability that a pair of siblings have 0, 1 or 2 alleles in common at a particular place on
the genome can be used to weight their likelihood under three models (Eaves et al., 1996).

Frequency Command

Syntax:
Freq <formula> ;
where formula is a legal matrix algebra formula

For maximum likelihood analysis of raw continuous data, it is possible to enter a formula
for the frequency of the individual observations.  For a constant frequency that does not
change across the individual cases, this formula could be a scalar (1x1) matrix with the
weight in it.  More commonly it is desired that the frequency changes across the
observations, in which case the use of definition variables to assign variables read in as data
to the elements of matrices may be used.
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1 0 0 0

0 1 0 0

4.4 Putting Numbers in Matrices

This section describes three methods of entering numbers into matrices (see Section 4.5 for
how to specify elements of matrices to be free, fixed or constrained parameters).  In Section
3.1, we saw how matrices could be declared as one of 11 types, such as identity, symmetric,
diagonal or full (see Table 4.1), and how their dimensions (rows, r and columns, c) were
specified.  On inspection of the table, we see that types Zero, Identity Identity|Zero and
Zero|Identity (IZ) have no free elements at all.  For example, there is nothing more to
know about an IZ matrix which has 2 rows and 4 columns.  It looks like this: 

and it cannot be changed at all.  If it was altered, then it would no longer be an IZ matrix.

All six remaining matrix types have modifiable elements which may be altered with the
commands Matrix, Start or Value.  The number of modifiable elements varies according to:
C The number of rows and columns in the matrix
C The type of the matrix

All modifiable elements of a matrix are initialized at zero.  The order of elements in a matrix
is left to right, by rows.  For example, a symmetric (3×3) matrix would be read as: 
1 
2 3 
4 5 6 
See Table 4.3 for more examples on the patterning of matrices.

Matrix Command

Syntax:
Matrix <matrix name> {File=filename} <numlist>
where <numlist> is a free format list of numbers.  

Note that different syntax is required in multiple fit mode:
Matrix <group number> <matrix name> {File=filename} <numlist>

The Matrix command supplies a list of values for the modifiable elements of a matrix.  The
list length required varies according to matrix type, and size as described at the start of this
Section, on page 77.  For example, suppose we specify a diagonal matrix A with 3 rows and
3 columns.  The fourth column in Table 4.1 shows that the number of free elements is equal
to r for diagonal elements, so we supply r elements. The command lines 
Matrix A .3  5 9 
or, equivalently 
Matrix-I-would-like-to-change-is A 
0.3D+00 5 9.00000000 
would result in matrix A as: 
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.3 0 0

0 5 0

0 0 9

The Matrix command operates regardless of whether elements have been specified as fixed
or free parameters.

Matrix will read its elements from a file with a FORTRAN format on the first line.  Such
files may have been produced by an earlier run of MX, or by another program.  LISREL
matrix output files (produced by commands such as gamma=filename on the LISREL OU
line) are fully compatible.  The files must contain at least as many numbers as required to
fill the changeable elements of the matrix specified (see page 77).

O
MX always expects a format, so a * should be supplied for matrices in free format (numbers
separated by blanks and carriage returns).

Start and Value Commands

Syntax:
Start/Value <value> <element list>/ All
where <element list> consists of matrix elements (e.g. A 1 2 3) and may include the TO
keyword

In a large matrix, it is not convenient to provide a value for all the elements of a matrix,
when only a few need to be modified.  Under these circumstances, it is easier to explicitly
change elements by name.  Elements may be referred to by up to three subscripts, according
to the syntax
A {<group>} <row> <col>

If the matrix you wish to refer to is in the current group, the group number may be omitted.
The numbers <group> <row> <col> may be separated by any number of non-numeric or
blank characters, so that, for example, to put .5 in row 2 column 3 of group 1's A matrix, you
could enter:
Value.5 A 1 2 3
will work the same as 
Value.5 A(1,2,3)
N.B. It is only possible to modify matrices declared in the current or previous groups.
Value and Start recognize #define’d variables (see page 42).  For example. We could have
the statements
#define first 1
#define rowsinA 6
#define colsinA 10 
at the top of the script, and then 
Value 1.5 A first 1 1 to A first rowsinA colsinA 
would set 1.5 to all the fixed (non-free) elements of A, from  A 1 1 to A 6 10.
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The difference between Start and Value lies in their treatment of elements when the
keywords ALL or TO are used (! is a synonym for TO).  With the keyword ALL, Start assigns
a starting value to every free parameter specified at that point in the input file.  Value does
the opposite -- it assigns its value to every fixed matrix element specified up to that point.
Although Start does the same thing if the TO keyword is specified, i.e. only apply its value
to free parameters, Value behaves differently.  It will assign a value to all elements in the
same specified range, free parameter or fixed. 
The TO keyword should be used only to specify a range of matrix elements within the same
matrix.

4.5 Putting Parameters in Matrices

Parallel to the placement of numbers in matrices described in Section 4.4, there are facilities
for putting parameters in matrices.  Note also that all modifiable elements of a matrix can
be specified as different free parameters using the keyword Free after the matrix is specified
(see Section 4.1), and that building models with this in mind can be much faster and more
flexible (see Chapter 1).

Pattern Command

Syntax:
Pattern <matrix name> {File=filename} <numlist>
where <numlist> is a list of 1's and 0's.  

Note that different syntax is required in multiple fit mode:
Pattern <group number> <matrix name> {File=filename} <numlist> 

The Pattern command is a simple method that has the same syntax as the LISREL command
on which it was based.  Following the Pattern command, the user must provide the correct
number (see Matrix command page 77) of 1's and 0's for that matrix.  A 1 (or any non-zero
value) indicates that the element is a free parameter (which may be constrained to equal
another free parameter - see the Equate command on page 80), and a 0 indicates that the
element is fixed. 

Fix and Free Commands

Syntax:
Fix/Free <value> <element list>
where <element list> is a list of modifiable matrix elements

The Fix and Free commands operate directly on specific matrix elements or sets of matrix
elements.  Fix makes a parameter fixed (if it was Free before) and Free makes an element
a free parameter to be estimated.  Matrix elements are referred to by group, row and column
as described in page 78. The keywords TO and ALL may be used to specify ranges of matrix
elements to be fixed or freed.  See page 105 for alternative methods to fix parameters.

For example, suppose in group 1, matrix A was defined as symmetric, with 4 rows and
columns.  Initially it would be patterned with zeroes throughout. The command 
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0 1 3 6

1 2 4 7

3 4 5 8

6 7 8 0

0 1 3 6

1 2 4 0

3 4 5 8

6 0 8 0

Free a 1 2 1 - a 1 4 3
would give the following pattern: 

if this command was followed by
Fix A 1 4 2
the parameter specification would become: 

In symmetric matrices, references to the upper triangle are legal;anything done to an element
one side of the diagonal (Aij) is done to the corresponding element on the other side (Aji).

Equate Command

Syntax:
Equate <matrix> {<gp>} <r> <c> <matrix> {<gp>} <r> <c> ...} }

In order to constrain matrix elements to equal one another, the Equate command may be
used.  Its primary purpose is to specify equality constraints among parameters, but it can be
used to copy a numeric value from one matrix element to another.  There is a big conceptual
difference between the first element specified in a list and the others.  The fixed or free
status of the first element is given to the remaining elements in the list, be they fixed or free.
If the first element is a free parameter, the same parameter is copied to the other elements.
If the first element is fixed, then a warning message is printed, to the effect that all other
elements will be fixed.  The value in the first element is then passed to the other elements
in the list. The Equate command may be used within matrices, or across matrices in the same
group, or across matrices in different groups.  Note that it is not possible to use Equate to
make an immovable element (such as an element of a matrix specified as type ID, or an
off-diagonal element of a diagonal matrix) into a free parameter.

For example, given matrices specified in group 1 as follows:
Begin Matrices; 
 A Symm 3 3 Free
 B Full 2 4 
 I Identity 6 6
End Matrices;
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the following Equate statements are legal: 

Equate A 1 1 B(2,2) B 1 4 
Equate B 2 1 A 1 2 3 
Equate BANANA 2 2 APPLE 1 1 1
However, the following are illegal: 
Equate A 1 1 I 2 2 (a)
Equate I 5 5 B 1 1  (b)
Equate A 1 2 C 1 1 (c)
Equate A 4 4 B 1 1 (d)
Equate A 2 2 G 4 1 1 (e)
They fail because: I is an identity matrix (a & b), C has not been specified (c), A does not
have 4 rows and columns (d), and it is not possible to refer to an element of a matrix in a
later group (e). 

For large models with many constraints it is often more efficient to use the Specification
command, or to seek repetitive structures in the model matrices and use partitioned matrices
(see Chapter 1), or both.  The kronecker product can be particularly useful when specifying
repetitive partitioned matrix structures.

Specification Command

Syntax:
Specification <matrix name> a { b {c}}
where a, b and c are not necessarily distinct integers.  

Note that different syntax is required in multiple fit mode:
Specification <group number> <matrix name> a { b {c}}

Following the Specification command, the user supplies a list of numbers that varies in
length according to the dimensions and type of the matrix (see Section 4.4).  If a zero is
supplied, it indicates that the element is to be fixed.  Non-zero elements refer to free
parameters, and the same number refers to the same parameter.  For example, the command
Specification A 
1 2 3 0 0 0 
0 0 0 3 2 1
would be equivalent to the statements 
Pattern A 
1 1 1 0 0 0 
0 0 0 1 1 1 
Equate A 1 1 A 2 6 
Equate A 1 2 A 2 5 
Equate A 1 3 A 2 4
The second method becomes tedious and error-prone in large models.

Note that the Specification and Pattern commands cannot be mixed in the same MX job.
This is for safety, because the opportunities for user error are too large.
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Boundary Command

Syntax:
Bound low high <parlist> / ALL
where <parlist> is a list of matrix elements or a list of parameter Specification numbers.

Boundary Constraints

By default, parameters to be estimated are constrained to lie between -10000 and +10000.
These limits can be increased or decreased with the Bound command.  Boundaries may be
supplied more than once for any parameter, but only the last Bound statement referring to a
particular element is used.  For example the statements
Boundary -1 1 all 
Boundary .3 5 a 1 4 6 a 1 5 6
would change the limits for all parameters to -1 and +1, except those (if any) in elements A
1 4 6 and A 1 5 6.  The TO syntax may be used to specify ranges within matrices, so that
Boundary 0 1 X 1 2 to X 1 6 
would make parameters in all elements between X 1 2 and X 1 6 lie take values between
zero and one.  If the Specification command has been used to specify parameters in
matrices, then it may be easier to refer to parameters with these numbers in a Bound
command.  Thus
Specification A 
0 2 4 6 
2 0 6 7 
Boundary 0 10 2 4
would be permitted as a method of bounding parameters 2 and 4 to lie between zero and ten.

Linear and Non-Linear Inequality Constraints
See page 54 on the use of constraint groups to implement inequality constraints.

4.6 Label Matrices and Select Variables

Labeling Matrices

Syntax:
Labels Row/Column <matrixname> <label-list>

After matrices have been declared, whether within a Matrices or Algebra section, labels may
be given for the row or column (or both) of any matrix that has free elements.  Matrices
without free elements (Zero, Identity, Identity|Zero, and Zero|Identity and Unit) are
never displayed so labels provided for these matrices will not appear on the output.  The
label-list contains labels separated by blanks or carriage returns.  Labels must not begin with
a number and may be up to 8 characters long.  More characters can be read, but MX only
regards the first eight as significant, and will only print the first eight on the output.

Labels may be given for the observed data by issuing a Label command before the matrices
command, as described in Section 4.6.
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Identification Codes

Syntax:
ICodes <numlist>
where <numlist> is a number list of length NInput_vars.

The ICodes command may be used in conjunction with the VL or rectangular data to specify
a non-standard structure of the expected covariance matrix.  It may be thought of as a select
command which operates on the predicted covariance matrix and predicted mean vector.
By default, the identification codes for the covariance matrix are 1 2 3 4...  For example,
if NInput_vars=3 then by default the expected covariance matrix has a structure like this: 

From which structure it would be possible to read data in a VLength file that had forms: 
1 
1 .1 
1 
2 .2 
1
3 .3
2 
1 2 .1 .2 
2
1 3 .1 .3
2 
2 3 .2 .3 
3 
1 2 3 .1 .2 .3
and any of these could be reordered.  For example, if the following VLength data were input:
2 
3 1 .9 .4
MX would generate a covariance matrix of the form 

if means are being estimated, they will also be selected appropriately, in this case selecting
µ3,µ1 from an initial vector (µ1 µ2 µ3).
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The ICodes command allows the default order 1 2 3... to change, making an infinite
variety of input data vectors readable. The repetition of a number is most useful for
pedigrees of variable structure, for example, if the model generates the covariance between
two parents and two children, data that come from families with more than two children may
be handled.  In this case, the ICodes command would be: 
ICodes 1 2 3 3 

And thus the covariance matrix looks like this: 

If the following VLength data were read:
3 
3 3 3 .2 .4 .6
then MX would create the following covariance matrix for this data structure:

The fact that two 3's have been given allows the generation of the expected covariance
matrix between any number of individuals with code 3.
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5 Options for Fit Functions andOutput
What you will find in this chapter

# Details on the built-in fit functions
# How to use other fit functions
# How to increase or decrease the output
# Confidence intervals and standard errors
# Power calculations
# Changing the technical optimization parameters
# Fitting submodels with multiple fit
# Writing matrices to files
# Saving jobs and results to binary files
# How to create RAMpath diagrams

5.1 Options and End Commands

Syntax:
Options <multiple> <fitfunc> <statout> <optimpar> <write> End \
where <multiple> starts multiple fit mode, <fitfunc> specifies the fit function, <statout>
requests statistical output, <optimpar> requests optimization parameters, and <write>
specifies the filenames to write matrices to files

The Option lines of MX allow the specification of a wide variety of keywords and
parameters to control the type of fit function used, the amount of output requested, file
names for result matrices, and many others.  The Option command does not signify the end
of a group, so several Option lines may be given within any group.  Option commands
should follow Model or Covariance statements, and should not be followed by Bound
commands.  To end a group, the End Group; command is used, for example, 

Option Mxa=Afile.out
Option RSiduals NAG=30 
End Group;

5.2 Fit Functions: Defaults and Alternatives

The fit function for a group is automatically set according to the type of data that are read.
For example, if covariance matrices alone are read, the default is maximum likelihood.
Table 5.1 shows the default fit functions selected by MX for a given data input.  Note that
the method may change between groups.  If a function that does not asymptote to ÷2 (e.g. RU
or RM) is used in any group, then no ÷2 probability is given at the end of optimization.  In
general, the default fit function is appropriate for the data supplied.  MX does not provide
for altering the input data from one type to another (e.g. converting a covariance matrix to
a correlation matrix).  However, it is a simple task to write a separate MX script to make this
conversion. 
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LS ' df ( tr (S&Ó) 2

2
)

ML ' df (ln|Ó|& ln|S|% (tr (SÓ&1))&p)

Table 5.1 Default fit functions according to the type of data that have been read. 

Input data Default fit function

CMatrix, KMatrix or PMatrix
CMatrix, KMatrix or PMatrix with ACov
CMatrix, KMatrix or PMatrix with AVar
Rawdata, VLength or Rectangular
CTable

ML
AWLS
DWLS
RM
MLN

CMatrix - covariance matrix; KMatrix/PMatrix - correlation matrix; ACov - asymptotic
covariance matrix; AVar - asymptotic variance matrix; Radiata - Raw data; VLength -
variable length data; Rectangular - rectangular file;  CTable - contingency table; 
ML - maximum likelihood; AWLS - asymptotic weighted least squares; DWLS - diagonal
weighted least squares; RM raw maximum likelihood; MLN - maximum likelihood assuming
bivariate normal liability. 

Standard Fit Functions

There are several good introductions to the properties of different fit functions (e.g Jöreskog
& Sörbom, 1989; Bentler, 1989). Controversy exists about the relative merits of the different
methods in the face of assumption violations (see Kaplan, 1990), and it seems wise for the
user to treat this information in the same way as a white wine from the Loire (drink youngest
available).  Currently, maximum likelihood (ML) is showing robustness in the face of
violations of the assumptions of multivariate normality.  Asymptotic weighted least squares
(AWLS) generally performs better in the presence of kurtosis, but can be at least as badly
affected by skewness as ML.  See however, simulation work by Rigdon and Ferguson (1991)
for problems with tetrachoric correlations.

In the following sections, the calculation of the fit functions is described, where S is the
observed covariance matrix, Ó is the expected covariance matrix, tr(A) indicates the trace
of and |A| indicates the determinant of matrix A. S and Ó are of order p and df is one less
than the sample size used to calculate S.

Least Squares  LS
The unweighted least squares fit function is calculated by the formula:

Maximum Likelihood  ML
When model fitting to covariance matrices, the maximum likelihood fit function is 
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and this is modified when both a mean vector x and a model for the means µ (see page 74)
are supplied, this function is augmented to become 

In order for the ML fit function to be calculated, Ó must be positive definite.  If, during
optimization, the determinant of S is less than 10-30 then MX uses a penalty function or other
methods to try to steer optimization back towards a positive definite solution.  The penalty
function is

If the starting values begin optimization in this region, it is difficult for the optimizer to
escape this high plateau, so optimization may fail.  To avoid this, starting values may be
revised or the LSML fit function may be used to obtain sensible starting values for ML
estimation.  LSML first fits the model by least squares, then by maximum likelihood.

Generalized least squares  GLS
Generalized least squares is based on the principles of Aitken (1934-35); see Browne (1974)

GLS operates for covariance matrices only.

Asymptotic weighted least squares  AWLS
Asymptotic weighted least squares follows from work by Browne (1982, 1984) and others.
Effectively, the variance covariance matrix of the observed summary statistics is used as a
weight matrix W.  Formally the fit function is 

By default, if a correlation matrix (KMatrix or PMatrix) is supplied, the above formula is
modified to 

The term  exists to constrain the elements of the diagonal to equal one.  If thedf

2
(1&Óii)

2
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model fails to meet this constraint, the fit function is inflated.  MX prints the amount of the
fit function that is due to this component of model misspecification.  The second term is not
calculated (and does not contribute to the fit function) if the keyword Diagonal appears on
the Option line. 

An alternative approach to maintaining a diagonal of ones would be to standardize the
expected covariance matrix before calculating the AWLS fit function. MX does this if the
keyword Standardize appears on the Options line.  Some care with starting values is needed
here, because the solution for a model standardized in this way is necessarily not unique.
A third approach would be to use a nonlinear constraint group (see Section 3.5) that
constrains the diagonal elements to equal unity.

Diagonally weighted least squares  DWLS
Diagonally weighted least squares is a simplified form of AWLS for use with large problems
where the AWLS matrix becomes unmanageably large.  It is a compromise with less
statistical validity than AWLS and should be used with caution.  Select does not work with
DWLS to discourage its use.  The fit function for DWLS is simply: 

where W is a diagonal matrix of variances of the observed covariances.   is replaced3n
i'13

i
j'1

by if a correlation matrix is supplied as data.3n
i'23

i!1
j'1

Least Squares - Maximum Likelihood  LSML
This fit function starts with unweighted least squares, and takes parameter estimates from
the solution as starting values for maximum likelihood estimation.  This method is useful
to avoid having to specify starting values that generate a positive definite covariance matrix.
Its disadvantage is that it consumes more computer time than would supplying appropriate
start values and using ML alone.  Though more robust to bad starting values, it is not
infallible; optimization is not (yet) an exact science.

Maximum Likelihood Analysis of Raw Continuous Data

When we have a sample of complete multinormal data, the summary statistics of means and
covariance matrices are sufficient statistics to obtain maximum likelihood estimates of
parameters (see the keyword ML above).  It is common practice to remove from analysis any
subject that has missing data.  However, there are occasions when missing data result in the
omission of a significant amount of data from analysis.  If the number of types of missing
data is small, for example, if there are really two sub-populations, one that has data on 6
tests, and one that lacks data on the fourth test, then covariance matrices could be computed
separately for the two populations and models fitted separately to the different groups.  MX

is flexible, allowing different groups to have different numbers of input variables.

This multi-group approach breaks down if the number of sub-populations is large and the
sample size for each group is too small to estimate a positive definite observed covariance
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matrix (this happens if the number of variables exceeds the number of subjects).  For this
reason, a number of methods of handling incomplete data are provided in MX.  RM (raw
maximum likelihood) is really an extension of the multigroup method described above, but
calculates twice the negative log-likelihood of the data for each observation.  The procedure
follows the theory described by Lange et al., (1976).  If there are k observed variables in the
set, the normal probability density function of an observed vector xi is 

where Ó is the population covariance matrix and µi is the (column) vector of population
means of the variables, and |Ó| and Ó!1 denote the determinant and inverse of the matrix Ó,
respectively. The fit function is thus: 

If there are incomplete data, a separate group could be constructed for each different type
of data vector.  This could be rather tedious for anything beyond a very few types of vector,
so MX provides a second, more general approach.  The approach is to create a variable
length record or rectangular file (page 49).  This allows the use of the above fit function, but
with a variable length observed vector x.  The appropriate mean vector µ and covariance
matrix Ó is automatically created by MX for each observation.  To save on computer time,
the creation of µ and Ó (and importantly Ó!1) is done only if a vector is different in structure
from the previous vector.  Therefore, considerable CPU-time saving can be obtained if
sorted data are supplied to MX.  An example script can be found on page 138.  Individual
likelihoods and related statistics can be written to a file (see p. 107).

Maximum Likelihood Analysis of Raw Ordinal Data

Data analysis proceeds by maximizing the likelihood under a multivariate normal
distribution model.  In order for this to take place, it is necessary to supply both a matrix
formula for the covariances and a matrix formula for the thresholds.  The covariance
formula must result in a matrix which is square, symmetric 8 and has the same order as the
number of variables read in from the Ordinal file.  The threshold statement must yield a
matrix which has the same number of columns as the number of variables being analyzed.
The number of rows of this matrix must match the maximum category of all of the variables
in the data file, or if the highest statement is used, the largest value in the argument to this
command.  This maximum category of all is known as maxcat.

For a vector of observed ordinal responses y = (y0, y1, ... ym), the likelihood is computed by
the expected proportion in the corresponding cell of the multivariate normal distribution.
Let the highest category of variable j be denoted by hj, and let tij denote the jth threshold of
variable i.  The expected proportion in the categories of y is computed as:
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where t0 j= - 4, thj= 4, and ö(x) is the multivariate normal probability density function (pdf),
given by 

in which Ó  is the predicted covariance matrix of the variables, µi is fixed at zero for all i.

To illustrate in a trivariate case, the two vectors of observations
0 2 1
and 
. . 1
would have likelihoods computed as:

If the third variable is binary, then the upper limit on integration would be t32 = 4.  For the
second vector of observations, two measures are missing so the likelihood simplifies to the
single integral:

Tests of mean differences between populations may be carried out by adding a vector of
constants to each row of the threshold matrix.  This may be is easiest to do via the
Kronecker product of a 1× m vector of free parameters with a Unit column vector that has
maxcat elements.  This formulation is a parametric model for the distribution of ordinal
responses.  The parameters of the distribution are those that influence the predicted
thresholds T and the predicted covariance matrix Ó.

An especially important feature of the maximum likelihood raw data approach is that it
provides a natural method of handling missing data that are so common in longitudinal and
multivariate studies.  In theory, data that are missing completely at random (MCAR) or
missing at random (MAR) are correctly handled by this procedure and will provide unbiased
maximum likelihood estimates as long as the assumptions of the multivariate normal hold
(Little & Rubin, 1987).  This is entirely analogous to the continuous case.  Failure to include
cases that contain missing observations can lead to bias in parameter estimates.  Elimination
of such cases will almost always lead to larger confidence intervals on all parameters.

A further advantage of the raw data approach is that it provides a natural way to exploit
moderator variables, using the definition variable methods described on pages 35 and  139.
At this time it is only possible to model binary variables via path diagrams in the graphical
interface, because the GUI always generates a script with a single vector of means, and not
a matrix of thresholds.  In the case of binary variables, the method will work from diagrams
because MX treats the mean and threshold statements equivalently.

An example of data analysis using this method may be found on the MX website at
http://views.vcu.edu/mx/examples/ordinal
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Contingency Table Analysis

MX has a built-in fit function for the maximum-likelihood analysis of 2-way contingency
tables.  Two-way tables are inherently bivariate, so we are implicitly fitting a 2×2
covariance matrix to the cell frequencies, and estimating a tetrachoric or polychoric
correlation.  Figure 5.2 shows a contour plot of the frequency distribution of two variables,
X and Y.

Figure 5.2 Contour plot showing a bivariate normal distribution with correlation r=.9
and two thresholds in the X and Y dimensions.

For an r by c contingency table, there are assumed to be r-1 row thresholds and c-1 column
thresholds that separate the observed categories of individuals. 

Twice the log-likelihood of the observed frequency data is calculated as: 

where nij is the observed frequency in cell ij, pij is the expected proportion in cell ij, and n..

is the total number of observations in the contingency table.  The expected proportion in
each cell is calculated by numerical integration of the bivariate normal distribution,
performed by subroutine BIVNOR (Schervish, 1984).  For example, the expected proportion
with individual 1 lying in the category between threshold a and threshold b and with
individual 2 lying in the category between threshold c and threshold d would be given by:

where ö denotes the multinormal probability density function, and vi is the liability of
individual I.

Since nij is not estimated, the number of degrees of freedom associated with an r×c table is
rc-1.  If z cells have not been ascertained, the number of degrees of freedom is reduced by
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z.  In order to compute an approximate ÷2 statistic, twice the likelihood of the data under the
model is subtracted from the likelihood of the observed data themselves, calculated as 

See page 75 for details on specifying thresholds for models fitted to contingency table data,
and page 128 for an example script.

Non-random Ascertainment

MX will automatically calculate an ascertainment correction while calculating the likelihood
of the incompletely ascertained data. For example, if we ascertain a sample of 60 probands
from hospital records and examine their spouses, of whom 10 are observed to have the same
disorder, then a 2×2 contingency table would be supplied as follows:
 
CTable 2 2 
-1 -1 
50 10

The -1 in the cells of the first row indicate that subjects were not ascertained in these areas.
The likelihood of the observed data must be corrected for the incomplete ascertainment of
subjects for study.  Effectively, as we omit certain classes of person from observation, so
the likelihood of observing the remaining individuals increases.  Mathematically this is
expressed by dividing the likelihood by the proportion of the population remaining after
ascertainment.  We obtain this by subtracting the proportions in all omitted classes from the
total population proportion (i.e. 1.0). In our example, assuming that individual 1 has to be
above threshold, the proportion omitted is 

where t is the ascertainment threshold, v1 and v2 are the liability values of individuals 1 and
2, and ö is the multinormal probability density function. The likelihood corrected for
ascertainment would simply be the likelihood as obtained before, but divided by .1!A

~

User-defined Fit Functions

If the User-defined keyword appears on the Options line, the fit function for the group is
to be user specified.  In order for this to be the case, the matrix expression given as the
model (Constraint or Covariance command) must evaluate to a scalar.  There are no other
rules. Any of the automatically defined fit functions LS, ML, AWLS etc. could be specified
as user-defined functions, but it is generally less efficient to do so.  User-defined functions
are recommended only when the built-in functions are not suitable.  A simple example is
shown on page 147.
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5.3 Statistical Output and Optimization Options

In this Section we discuss some of the statistics that MX will compute automatically.  While
the range of these statistics is limited, the user should note that it is quite straightforward to
compute his or her own functions of the parameters or goodness of fit statistics using
calculation groups (see Section 3.5 for syntax and page 118 for an example script that
computes standardized estimates). 

Standard goodness-of-fit output

At the end of optimization, MX prints the value of the fit function, which is asymptotically
distributed as ÷2 when the fit function is maximum likelihood and the data are covariance
matrices.  Similar distributional properties are thought to hold for generalized least squares,
the contingency table likelihood fit function, and asymptotic weighted least squares.  For
these functions, the degrees of freedom and probability are printed, together with Akaike’s
Information Criterion, computed as ÷2-2df.  The degrees of freedom are calculated as the
number of observed statistics minus the number of observed statistics plus the number of
non-linear constraints.  To be judged a good fit, models should have a non-significant chi-
squared (p>.05).  With large sample sizes, significant chi-squared can come from relatively
trivial failures of the model; alternative comparative fit statistics (see p. 100) can be used
for these cases.  Confidence intervals on the goodness-of-fit ÷2 may be printed using option
CI.

User-defined fit functions and raw data maximum-likelihood are not treated as being
distributed as chi-squared, so the probability is not computed by default.  However,
sometimes the user-defined fit-function will indeed be appropriately distributed, so the
option ISCHI can be used to override this default behavior.  An example where this would
be appropriate is where the value of twice the log-likelihood from a saturated or super model
-2ln L had been entered as a user-defined fit function group, and option df used to adjust the
degrees of freedom to the difference between the models.

RMSEA

Root Mean Squared Error Approximation, or RMSEA (Steiger & Lind, 1980; McDonald,
1989), is a goodness-of-fit index which is automatically printed by MX after fitting a model
that results in a chi-squared goodness-of-fit.  The primary aim of this statistic is to provide
a measure of fit that is relatively independent of sample size.  Essentially, it is a weighted
sum of discrepancies.  Values below .10 indicate a good fit, and values below .05 indicate
a very good fit.  The index is computed by 

for the single group case.  In the multigroup case, a different formula is used.  Following an
unpublished manuscript by Dr. Steiger, the index is effectively multiplied by the square-root
of the number of groups, when the same number of variables is analyzed in each group.  MX

also makes adjustments for different numbers of variables being in each group, although this
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is highly experimental at present.  For now, it is sufficient to note that the multigroup
RMSEA is corrected from the original formula.  RMSEA should be viewed skeptically when
the groups do not have the same number of variables.

Suppressing Output

Syntax:
Option NO_Output

Before describing ways in which MX output can be increased, we note the valuable option
NO_Output which prevents printing of all output for a group.  This option should be used by
the ecologically-minded as often as possible.  Even the environmentally unconscious may
find it useful to reduce their disk-space usage, but some caution should be taken not to use
it too frequently since valuable information that could reveal misspecification of the model
might be missed.

Appearance

Syntax:
Option NDecimals=n or Width=m
where n is the number of decimal places, and m is the number of columns

By default, MX will print most numbers with three decimal places, or use exponential format
if there are very small or very large numbers in a matrix.  You may override this default with
the NDecimals keyword, where NDecimals=n will print n decimal places of precision.

MX prints up to 80-columns of output, which is suitable for viewing on an 80-column
display or legal/letter/A4 paper (in portrait orientation) with a 10cpi font.  This default may
be changed with the option Width=m where m is the number of columns desired.  At the
present time, the NDecimals and Width parameters cannot be used together (sorry).

Residuals

Syntax:
Option RSiduals

The Rsiduals keyword requests that the observed matrix, the expected matrix, and the
residuals (observed - expected) be printed.  In calculation and constraint groups, only the
expected matrix is printed, since neither has any data.  Note that RSiduals is the only way
to print the observed matrix, and may be especially useful if the Select command has been
used.  When means have been supplied, the observed and expected mean vectors will be
printed.  Expected means also appear when using maximum likelihood with raw data.  With
contingency tables, MX prints the observed and expected frequencies and their difference.

Under asymptotic weighted least squares MX prints two types of residual matrix.  First, it
prints the unweighted difference between the observed and expected correlations or
covariances.  Second, it prints a weighted residual matrix, which is calculated from the
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formula (see page 86):

The sum of these elements gives the fit function for the group (neglecting any penalty
function for the diagonal of a correlation matrix).  Note that not all elements will be
positive, but that their sum is necessarily non-negative.  Quite often, inspection of the
weighted residuals will give a clearer idea of the cause of model failure than consideration
of the unweighted residuals alone.

Adjusting Degrees of Freedom
 
Syntax:
Option DFreedom=n
where n is the adjusted number of degrees of freedom

If a correlation matrix is read instead of a covariance matrix, the number of statistics
provided is usually less than when variances are also given.  The amount of the reduction
in information depends on the structure of the data.  For example, if MZ and DZ twins have
been measured on one variable, there are four statistics that are necessarily equal (the
variances of twin 1 and twin 2 in the MZ and DZ groups).  Only one of these statistics
confers any information (it scales the size of the MZ and DZ covariances), so three degrees
of freedom are lost, and DF=-3 should be placed on the Options line.  For multivariate twin
data, DF=-3k should be used, where 3k is three times the number of variables on which each
twin is measured.  We can extend this idea to m groups of pedigrees of size n, each
measured on k variables, in which case df=-k(mn-1) should be used.

Power Calculations

Syntax:
Option Power=alpha,df
where alpha is the probability level of the test, and df are the associated degrees of freedom

Power calculations are useful in a wide variety of contexts, especially experimental design
and getting grants.  For theoretical work, once one has established that it is possible in
principle to detect an effect, a natural question is ‘what are the chances of finding it with a
sample of x many subjects?’  The usual way to approach this problem is to simulate data
with a set of fixed parameter values, called the ‘true model’.  These simulated data are then
used as data to which a false model is fitted. The false model would normally be a submodel
of the true model, for example with a parameter fixed to zero instead of the value used in
the true world model.  The size of the chi-squared from this false model, given the sample
size, indicates the power of the test.  The Power command uses this ÷2 and the user-supplied
significance level á (alpha) and degrees of freedom (df) to compute the power of the study
to reject the hypothesis.  In addition, the program computes the total sample size that would
be required, given the current proportion of subjects in each group, to reject the hypothesis
at various power levels from .25 to .99.  See page 114 for an example application of this
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method in the context of the classical twin study. 

Confidence Intervals on Parameter Estimates

Syntax:
Interval {@val} <Matrix element list>
where val is the desired percentage of the confidence interval; 
e.g., Interval @80 will give 80% confidence intervals (default is 95%)

This command requests confidence intervals on any matrix element.  Usually one would
request an element that is a free parameter, but it is also possible to request confidence
intervals on computed matrices that are functions of free parameters.  This allows
confidence intervals on indirect effects in structural equation models to be computed.   MX

computes the upper and lower confidence intervals by conducting an optimization in n
parameters for to find each interval.  For long-running jobs involving many parameters or
cpu-intensive fitting functions, optimizations to find confidence intervals on parameters will
greatly increase the time taken to execute the job.  Therefore, we recommend that Intervals
be requested only when the script is thought to be working correctly.

The relative merits of likelihood-based confidence intervals versus standard errors based on
asymptotic theory of the parameter have been discussed by Meeker and Escobar (1995) and
Neale & Miller (1997).  In brief, standard errors have the advantage of being fast to
compute, but have several undesirable statistical properties.  First, the distribution of the
parameter estimate is assumed to be normal, whereas we have shown that it may not be
(Neale & Miller, 1997).  Second, t-statistics computed by dividing the estimate of a
parameter by its standard error are not invariant to transformation (Neale et al., 1989;
Kendall & Stuart, 1977).  That is, if we estimate a2 instead of a in a model, then a test of
whether parameter a is significant will not give the same answer.  For positive values of a
the likelihood-ratio test that a=0 will give the same answer, regardless of whether the model
was parameterized in terms of a or a2.   Third, mindless use of the standard error can give
nonsensical values if the parameter estimate is bounded.  For example, a residual error
variance may be theoretically bounded at zero, yet the standard error would imply less than
zero as a lower bound on the estimate.  With bounded parameters, MX will not report
infeasible values for the likelihood-based confidence intervals, although it should be noted
that confidence intervals that rest on parameter boundaries may not yield a decrease in fit
corresponding to the required amount for the interval in question.  Finally, the only major
drawback to confidence intervals is the additional computation time required.  As computers
become faster and cheaper, this problem will diminish.  

The procedure that MX uses to find confidence intervals is described in Neale & Miller
(1997).  The central idea is move a parameter as far away as possible from its estimate at the
optimal solution (i.e., its maximum likelihood estimate (MLE) if the fit function is ML) for
a given amount of increase in the fit function.  For example, 95% confidence intervals are
found by moving the parameter away from its MLE to a place where the fit function
increases by 3.84 chi-squared units.  Note that this moving away is done with all the other
parameters in the model still free to vary.  Obviously, stepping away from the MLE in small
increments and re-optimizing would be very cpu-intensive, requiring m optimizations over



Options for Fit Functions and Output 97

n-1 parameters for an m step search on an n parameter model.  Instead, MX uses a modified
fitting function that is a function of the difference in fit between the MLE solution and the
new solution, and the value of the parameter.  Essentially, the parameter (or matrix element)
in question is minimized (lower bound) or maximized (upper bound) subject to the
constraint that the fit of the model is a certain amount worse than at the maximum likelihood
solution.  As we know, optimization is not an exact science, and there can be problems in
conducting the search to find the confidence intervals, just as optimization may not be
successful when fitting a model.  To combat this problem, MX uses two main strategies.
First, if NPSOL returned an IFAIL of 4 (too few iterations) or 6 (Hessian accuracy
problems) then it will repeat the optimization from the final point, up to a maximum of five
times.  Second, the user is notified of such difficulties with the Lfail and Ufail columns in
the output.  For example, output might be

Confidence intervals requested in group            3
  Matrix Element Int.      Estimate         Lower         Upper  Lfail Ufail
  A   1   1   1  95.0        0.6196        0.5575        0.6879  0 0   0 0
  C   1   1   1  95.0        0.0000        0.0000        0.0000  1 2   0 3
  E   1   2   3  95.0        0.1735        0.1541        0.1961  0 0   6 5

In this case the attempts to find the CI's on A 1 1 1 appear successful.  To find the lower CI
on C 1 1 1, two refitting attempts were made, and the final solution received IFAIL=1
which is probably the right answer.  For the upper CI on C 1 1 1, three refits were
undertaken, and the solution was IFAIL=0, again probably the right answer.  The lower CI
on E 1 1 1, seems to be fine, but the upper one definitely shows signs of difficulty, with 5
attempts and still an IFAIL of 6.  One would do well to check this upper confidence interval
by removing the Interval commands and fixing the value of E 1 2 3 at .1961 to see whether
the fit function deteriorated by 3.84 chi-squared units.  It is easy to perform such a test for
a free parameter in matrix element E 1 2 3, using the statement 
 Drop @.1961 E 1 2 3
just before the End of the last group.

It is more difficult to test the accuracy of the CI if the matrix is a computed matrix.  In this
case, one way to do it would be to add a constraint group to the job, like this:

Constraint group to fix E 1 1 1 at .1961
 Constraint
 Matrices = Group 1
  K full 1 1
  Z full 1 4
 End Matrices;
 Matrix K .1961
 Matrix Z 2 3 2 3    ! to get the submatrix of E from element 2,3 to element 2,3
 Constraint \part(E,Z) = K ;
End Group

Again, the decrease in fit due to this constraint should be examined by subtracting the ÷2

goodness of fit found in the unconstrained model from the fit found with the constraint in
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place.  Should the difference not be approximately 3.84, one might wish to establish the
confidence interval manually by trying different values than .1961 in Matrix K (or Drop).

Standard Errors

Syntax:
Option SErrors
This option is being phased out in favor of confidence intervals (see p. 96).

MX uses the numerical estimates of the hessian matrix of the parameters to provide
approximate standard errors on the parameters.  While it gives estimates consistent with
those of other programs under a variety of conditions, this option is not reliable.  Under
these circumstances, standard errors may appear much too small.  The same is true if the
function precision is low (which may happen if, e.g., the fit function involves numerical
estimation of integrals).  The problem is sometimes overcome by altering the error function
precision parameter, with Option Err=value.  By default it is set close to machine accuracy;
setting it to 1-10 (or larger) may correct problems with totally unrealistic estimates of
standard errors.

. Standard errors do not work correctly when non-linear constraints are imposed with
constraint groups. 
Again, assessing significance and standard errors directly through changes in the model can
provide more robust estimates.  It is possible to get MX to doing this for you, but it requires
some subtle programming (see example conf.mx).  We hope to implement the method in a
more user-friendly way soon.

Randomizing Starting Values

Syntax:
Option THard=n
where n is a positive integer

If the parameter THard is set using TH=n where n is a positive integer, MX will generate
random starting values for all parameters and attempt to fit the model again.  This attempt
is likely to fail if no bounds are specified, because the default boundaries are -10000 and
+10000, and the random values will be random from within these bounds.  Most optimizers
fail if starting values are too far away from the final solution; MX has shown greater
tolerance than LISREL in this respect.

Testing Identification

THard can be very useful when exploring the identification of structural equation models.
If data are generated with particular fixed values for the variable parameters (È 1), then
optimization from a different set of starting values (È 2) should give a solution of the original
values (È 1).  This can be tested a number of times using THard.  If sensible bounds are not
given for the parameters, this test will likely fail because È 1 will not be recovered.  The key
to underidentification is finding a solution that fits perfectly, but with a parameter vector
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other than È 1.  If this is the case, the hypothesis that the model is identified has been
falsified.  Finding a number of solutions at È 1 does not prove identification of the model,
it merely increases the support for the hypothesis that it is identified.  Of course, this method
does not show that the model has been specified correctly; a completely misspecified model
may be identified.  See Option check below for another method.

Automatic Cold Restart

Syntax:
Option THard=-n
where n is a negative integer

During optimization, an estimate of the covariance matrix of the estimated parameters is
constructed.  Sometimes, this covariance matrix is inaccurate and optimization fails to
converge to the correct solution, a problem that is usually flagged by an IFAIL parameter
of -6.  Option TH=-n can be used to restart the optimization n times form the current solution,
but with the parameter covariance matrix reset to zero.

Jiggling Parameter Starting Values

Syntax:
Option Jiggle

Prior to optimization, parameter start values can be jiggled.  Jiggling replaces each
parameter start value xi with xi+.1(xi+.5).  This option can be useful to nudge MX away from
a saddle point which can be troublesome when using numerically estimated derivatives.  An
example of a common saddle point is when parameters are started at or very near to zero,
and the estimates x and -x have the same effect on the function value.  Such situations are
common in structural equation models which feature quadratic forms in their expectations;
the ACE genetic model is one such example.

When used in conjunction with a negative THard parameter, jiggling will occur each time
the refit is attempted.  This may cause estimates to drift from their initial values, especially
if the parameter concerned has no effect on the fit function.

Confidence Intervals on Fit Statistics

Confidence intervals on the chi-squared statistic are obtained using a single parameter
optimization method (Steiger and Lind, 1980). The 100(1-a)% confidence limits for the
noncentrality parameter lambda of a ÷2 df,lambda distribution are obtained by finding the
values of lambda that place the observed value of the Chi-square statistic at the 100 (a/2)
and 100(1-a/2) percentile points of a ÷2 df,lambda distribution.

You can check the MX results with the useful link at
http://www.stat.ucla.edu/calculators/cdf/ncchi2/ncchi2calc.phtml
by entering the chi-sq and df and the p level (.95 or .05) to find the upper and lower bounds
for 90% confidence intervals.  
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NFI' (FN&FT)/FN BentlerandBonett,1980
NFI2' (FN&FT)/(FN&dfT)

TLI' ((FN/dfN)&(FT/dfT))/((FN/dfN)&1.0) TuckerandLewis,1973
PFI' (dfT/dfN)NFI Mulaiket.al.,1989

PFI2'2NFI2(dfT)/(p(p&1))
RNI' ((FN&dfN)&(FT&dfT))/(FN&dfN) McDonaldandMarsh,1990

CI'exp(&.5((FT&dfT)/N)) McDonald,1989

These confidence intervals on the chi-squared are used directly to compute the confidence
intervals for the AIC and RMSEA statistics.

Comparative Fit Indices

Syntax:
Option Null=<÷2>,<df> 
where ÷2 and df are the statistics of a null model

Users may supply the results of fitting a null model (usually a simple diagonal model of
variances, but others are possible) with the null command which will extend the output in
the following way:
Fit statistic                    Estimate
Tested Model fit >>>>>>>>>>>>>     4.73426
Tested Model df >>>>>>>>>>>>>>     4.00000
Null Model fit* >>>>>>>>>>>>>>  1563.94400
Null Model df* >>>>>>>>>>>>>>>     6.00000
Normed fit Index >>>>>>>>>>>>>     0.99697
Normed fit Index 2 >>>>>>>>>>>     0.99953
Tucker Lewis Index >>>>>>>>>>>     0.99929
Parsimonious Fit Index>>>>>>>>     0.66465
Parsimonious Fit Index 2 >>>>>     0.02940
Relative Non-centrality Index>     0.99953
Centrality Index >>>>>>>>>>>>>     0.99961
 *User-supplied null-model statistic

They are calculated as follows: 

where FN  and FT are the goodness-of-fit (chi-squared) statistics respectively obtained under
the Null and Tested model, and which have dfN and dfT degrees of freedom.  N is the total
sample size (over all groups) and p is the number of free parameters in the model. Tanaka
(1993) discusses their relative merits, and Williams & Holahan (1994) conducted an
empirical study which gave support to the use of AIC in many contexts.  Marsh et al. (1997)
favor TLI as a comparative fit statistic.  Clearly, no fit statistic is ideal in all situations. 

Automatically Computing Likelihood-Ratio Statistics of Submodels

Syntax:
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Option ISSAT or
Option SAT=÷2,df

When fitting multiple models to the same data, it is common to want to know the difference
in fit, the difference in degrees of freedom, and the probability associated with these
differences.  Option Issat specifies the current model as a model against which subsequent
models fitted in the same run will be compared.  This model does not have to be saturated,
in the sense of having a free parameter for every observed statistic; it merely has to be a
supermodel against which subsequent submodels will be compared.  In addition, the fitting
function being used should be asymptotically ÷2 distributed, or be a -2 log-likelihood. Most
MX fit functions are of this type, but user-defined fit functions may not be.

Sometimes fitting a saturated model at the start of a sequence of analyses is computationally
burdensome.  As an alternative, the goodness-of-fit chi-squared and degrees of freedom of
a supermodel may be directly entered using Option SAT.  All subsequent models will be
compared against this supermodel.

Check Identification of Model

Syntax:
Option Check

By default, MX does not test identification of models via examination of the rank of the
hessian matrix of parameter estimates.  Option check does this, but it should be noted that
the results can give either false positives or false negatives.  While this is to some extent true
of programs that use exact derivatives, it is more true of MX which uses numerically
estimated derivatives.  When Option check is invoked, MX computes the eigenvalues and
eigenvectors of the hessian matrix, and uses this information to assess potential areas of
underidentification.  As stated elsewhere - especially in Jöreskog's early papers - a better
procedure is to attempt to find alternative sets of parameter estimates that give an equally
good fit to the data (which is proof of underidentification).  MX provides Option TH= to
facilitate this proof.  Identification should be tested on theoretical grounds whenever
possible (see texts by Neale & Cardon (1992, p.104); Bollen (1992) and Pearl (1994) for
discussion of these methods.

Changing Optimization Parameters

MX uses NPSOL, written by Walter Murray and Philip Gill at Stanford University, to
perform numerical optimization in the presence of general linear, non-linear and boundary
constraints.  MX attempts to choose suitable values for the parameters that control
optimization, taking into account the number of parameters to be estimated, the numerical
precision of the function value, and so on.  However, the enormous variety of types of
optimization tasks that can in principle be requested with MX means that the automatic
selection of these parameters is not always ideal.  In addition, difficulties in optimization
may require examination of the optional output that NPSOL can generate.  MX allows the
user to print these data and to alter the parameters as needed.  There are also facilities for
automatically performing some of the solutions of optimization difficulties suggested in the
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NPSOL manual (see also routine E04UCF in the NAG manual).

In general, parameters have been set for NPSOL on the cautious side, so that many of the
warning messages about IFAIL parameters being non-zero are spurious. This seems better
than being misled by the program giving the wrong answer without warning.  

# IFAIL=1 (code GREEN), most likely, the correct solution.
# IFAIL=4 (code BLUE - it ran out of breath), for which the Iterations=n may be used.
# IFAIL=3 (code RED - bad news) occurs in connection with constraints, normally they

have been misspecified so that they are impossible to satisfy.  Sometimes they are
possible to satisfy but the starting values make it difficult for the optimizer to find a
region where they are satisfied.  IFAIL=3 can always be cured by making certain that
the starting values satisfy all non-linear constraints, the command Fix all placed near
the end of the script is usefu in this regard..  Printing the residuals in the constraint
groups often helps. 

# IFAIL=6 (also code RED - take note) is the most tricky.  Sometimes it occurs because
of ill-conditioning  of the Hessian, which can be verified by examination of the NAGDUMP
output file (see page 102).  A solution here may be to use the TH=!n which requests
optimization from the current ‘solution’ with the Hessian reset to the identity matrix,
n times.  On other occasions, it may appear because of insufficient numerical precision,
yet still be at the right place.  If a parameter in your model is not identified, IFAIL=6 is
quite likely.

Appropriate choice of starting values is always recommended.  Many users start parameters
at zero because this is the default value of free matrix elements.  In practice, MX attempts
to avoid so doing by starting any parameter in the range -.01 to .01 at .01.  The user can
assist this process with the Jiggle option to further nudge the parameter value away from
a possible saddle point at zero (see page 99).  But best of all is a reasonable guess at the
parameter estimates that satisfies any non-linear constraints.

Setting Optimization Parameters

NAG=n, Default: NAG=0
If this statement appears on the Options line, the technical output from NPSOL is printed
in a file called NAGDUMP.OUT.  The value n controls the Major Print Level, the higher the
number the more verbose the output file.  Minimum output is written with NAG=1 and
maximum is written with NAG=30.  MX prints the initial and final value of the function.  If
option DB is present (see below) more detailed information on the parameter estimates will
be printed.  MX rescales all functions to 1.0 to assist general optimization, so the function
value printed by NPSOL is a proportion of this initial value.

Feasibility=n, Default = .00001
Will control the Nonlinear Feasibility Tolerance, i.e. FEAS=r defines “the maximum
acceptable absolute violations in linear and nonlinear constraints at a ‘feasible’ point; i.e.,
a linear constraint is considered satisfied if its violation does not exceed r” (NAG, 1990).
It has no effect if there are no nonlinear constraints.
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Iterations=n, Default = 100
Controls the number of major iterations.  Should be increased if IFAIL=4 error messages
occur.

Linesearch=r, Default = .9 if no non-linear constraints are present, otherwise, .3
Linesearch tolerance.

Optimality=r, Default = 1-(n+6) where n is approximately ln(Fi ) where Fi is the function
value at the starting values
Sets the optimality tolerance, a parameter controlling the accuracy of the solution.

Stepsize=r, Default = 10000
Infinite step size.

Function precision=r, Default = 1-(n+8) where n is approximately ln(Fi ) where Fi is the
function value at the starting values
Specifies function precision.  In general this should be set at a lower value than the required
precision of the solution. 

Obtaining Extensive Debug Output: DB=1
If the parameter DB=1 is set on the output line, together with NAG=n where n is greater than
zero, additional information will be written to the NAGDUMP.OUT file.  For each evaluation of
the function to obtain the gradient of the parameter vector, the fit function value for each
group, the total fit function, and the values of all the parameters are printed.  On each
evaluation of the function to obtain the constraint functions, the values of all the parameters
and the constraint functions are printed. Note that the order of the parameters in the vector
corresponds to the order used by NAG during optimization and not the order of parameter
specifications given by the user, or printed by MX.  Note also that using this option for
problems with more than a few parameters can result in enormous NAGDUMP.OUT files.
Examination of the first and last few iterations can be very helpful in identifying errant
parameters whose extreme values may be causing floating point errors that make the
program crash.

5.4 Fitting Submodels: Saving Matrices and Files

One of the powerful features of MX is its ability to start again where it left off.  An example
of this has already been described on pages 98 and 101 above, where repeated attempts to
optimize are made either from the current solution or from randomized starting values.  Here
we describe how repeated fits may be made from the solution, allowing for changes in the
model.  This can be done manually, writing out matrices to files, or automatically within the
same run, using the Multiple command, or from a saved binary file.  For large problems, use
of binary files can save a lot of time.

Fitting Submodels using Multiple Fit Option

Syntax:
Option Multiple
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If the keyword Multiple is included on the Options line, the next MX input file is assumed
to have a special form.  It will consist of a single group, ending with an Options line. The
only commands that may be used under the Multiple option are Specification, Pattern,
Matrix, Value, Start, Equate, Fix, Free and Options.  Data may not be changed,
matrices may not be added, and the matrix formulae specified in the Covariance or Means
statement cannot be altered.  At some time in the future, these restrictions may be lifted.

There is no group structure to the input stream following an Multiple command; all
modifications to the model must refer to matrices with a number identifying the particular
group in which the matrix is to be found.  This changes the usual form of the
Specification, Matrix and Pattern commands to include a group specification, which
must be placed directly after the keyword, before the letter indicating the matrix.  Thus
Specification A 
becomes
Specification 2 A
if A was specified in group 2.  As an example of the use of this command, consider the
simple factor model presented on page 41.  We could test the significance of the covariance
of the two variables by fixing parameter #2 to zero.  Obviously this could be achieved by
modifying the entire input file and running it separately, but the following will fit both
models in one run.

Simple MX example file 
 Data NGroups=1 NObservations=150 NInput_vars=2 
 CMatrix 
  1.2 .8 1.3 
 Matrices 
  A Full 2 1 
  D Diag 2 2 
 Model A*A' + D /
 Specification A 1 0 
 Specification D 0 3 
 Options Multiple RSiduals 
End 
 Specification 1 A 1 2 
End

@ Considerable computer time can be saved using Multiple, since the solution of a model
often has parameter estimates which are close to those estimated under nested models of the
same type.  In general, we recommend fitting models starting with the simplest, and working
up to more complex models.  When working from complex to simple, the Drop command
(see next section) can be useful.  If you have more than a single set of nested  models to test,
saving the general model in an MX binary save file (see page 105) can save considerable
time and effort. 

Multiple fit mode has always made revising the model and refitting from earlier solutions
easy to do by changing the parameter contents and values of matrix elements.  It is now
possible to change matrix formulae and other characteristics of a group, using the #group
3 syntax.  Options or matrix formulae supplied after this command would apply to group 3.
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For example, suppose that after fitting a model --- perhaps one that took days to run --- we
might discover that we had accidentally forgotten to request residuals from group 5.  If, in
anticipation of this or similar errors, we had issued a save command:
< usual model commands >
Option Multiple
End       !<- end statement of last group

Save incase.mxs
End

It would be possible to retrieve the solution, add the appropriate option, and re-run: 
Title - revise options to see residuals
Get incase.mxs
#group 5
Option RSiduals
End 

This type of strategy may be useful to obtain additional fit-statistics for null-model
comparisons.

Dropping Parameters from Model

Syntax:
Drop {@value} <parnumlist><elementlist>
where <parnumlist> is a list of parameter numbers as used in the Specification command,
and @value is an optional value to fix at, and Matrix element list is a list of matrix elements

Quite often, equality constraints between parameters lead to model specifications with the
same parameter in many different matrices or several groups or both.  Fixing all occurrences
of the parameter with the Fix parameter can be time-consuming and error prone, so the Drop
command may be used instead.  By default, all parameters whose specification number
matches a number in the list following the Drop command will be fixed to zero.  For
example:
Drop 5 8 7 
Drop 11 to 20
Drop X 2 1 3 
would fix to zero all occurrences of parameters 5, 8, 7, 11 through 20 and all occurrence of
whichever parameter is specified in element X 2 1 3.  Note that matrix addresses cannot be
used in this command.  It is possible to supply an optional value to the drop command, so
that for example
Drop @.5 2 3
would fix all occurrences of parameters 2 and 3 to 0.5.

Reading and Writing Binary Files

Syntax:
Save <filename> 
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Get <filename>
where <filename> is the name of the file to be saved or retrieved - the extension .mxs is
recommended

When the multiple fit option is implemented (see page 103) the entire input job
specifications, data, and estimates may be stored in binary format for rapid retrieval and
estimation in subsequent fitting of submodels. Note that Save must follow the entire job
specification.  Thus for example the following would save the results of fitting the model,
together with the complete model specification, in the file acesave.mxs:  

... 
! Mx commands for first job precede this line
Option Multiple
End
Save acesave.mxs 
! First command in multiple fit number 1 
Fix all 
End

The Fix ALL command simply stops the optimizer from trying to improve on the current
solution by fixing all the parameters.  To use this binary save file in another command file,
we could use the following: 
Title - using a binary file
Get acesave.mxs 
Free A 1 2 3
End

By retrieving a binary file, MX is automatically in the Multiple fit mode, so modifications
can be made to the model and a further series of hypotheses tested.  If Get is used in a
separate job, a title line is required before this statement. Normally, parameter estimates
after model fitting are stored, but if it is desired to save the user's starting values, it is
possible to set the number of iterations to zero, use Multiple, and Save the starting values.

Writing Matrices to Files

Syntax:
MXa= <filename>
where a is the single-letter name of the matrix to be written, or one of %E %M %P %V

MX will write matrices to files with this command.  The first line has header information,
including the group number, the matrix name, type and dimensions.  The matrix elements
are then written in FORTRAN format (6D13.6).  This file format is fully compatible with
LISREL, so matrices output by MX can be read in as starting values for LISREL and vice
versa  (see page 77).  If the matrix name is %E, the expected covariance matrix will be
written to the file.  If the matrix name is %M, the expected mean matrix will be written to a
file.  For groups with raw maximum likelihood fit functions, %P will write a series of
columns of information about the likelihood of individual pedigrees (see page 107).  Finally,
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it is also possible to save a VL file, with the %V keyword.  While this is not normally useful
(since it would recreate the original data file), following the select command it can be
advantageous.  Subsequent reading of the selected data can be faster than reading the whole
dataset and performing selection again.

Formatting and Appending Matrices Written to Files

Syntax:
Option Append
Option Format=(F)
where F is a legal FORTRAN format

The default 6D13.6 format used by MX to write matrices to files may be changed with
Option FORMAT.  It is best to consult a FORTRAN language reference manual for full
details on legal formats.  In brief, the general form for numbers is Fw.d where F indicates
floating point, w is total width, and d is the number of digits after the decimal point.  A
comma delimited list of formats may be provided.  Spaces may be inserted with the syntax
nx where n is the number of spaces provided, and parentheses may be used to repeat format
specifiers.  For example, 6(F5.2,2x) would be used to write numbers in 5 spaces with 2
decimal places, and followed by 2 spaces.  After writing 6 such numbers, a new line would
be used to write subsequent numbers.

Option Append causes all matrices to be appended to existing files of the same name, if they
exist.  The format is only written once, if the file does not previously exist.

Writing Individual Likelihood Statistics to Files

Syntax:
MX%P= <filename>

A valuable feature for identifying outliers and possible heterogeneity in raw data is to save
the individual likelihood statistics to a file.  These data may subsequently be inspected with
other software to produce half-normal plots and the like.  The syntax for this follows the
writing of a matrix to a file, but we separate it because of the complexity of the output.  For
each vector in the rectangular or V. data file, MX outputs eight columns of data:

1. -2lnL the likelihood function for that vector of observations
2. the square root of the Mahalanobis distance, Q = (x!µ)N Ó!1 (x!µ) 
3. a estimated z-score Z = ((Q/ni )^(1/3) - 1 + 2/(9ni )) (9ni /2)^(.5) where ni is the number

of individuals in the ith data vector
4. the number of the observation in the active (i.e. post selection) dataset.  Note that with

selection this may not correspond to the position of the vector in the data file 
5. the number of data points in the vector (i.e. the family size if it is a pedigree with one

variable per family member)
6. the number of times the log-likelihood was found to be incalculable during optimization
7. 000 if the likelihood was able to be evaluated at the solution, or 999 if it was

incalculable
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9 Iff with two f's means ‘if and only if’

8. the model number if there are multiple models requested with the NModel argument to
the Data line

Results from all raw data groups are written to the same file (the beginning of another
group's information can be seen from a change in the case number).   The third item in the
list is especially useful for detecting outliers when there are missing data, being relatively
independent of the number of data points in the vector in question (Johnson & Kotz, 1970;
Hopper & Mathews, 1982).  Of two formulae for computing the z-score (the other being Z2

= (2Qi).5 - (2ni - 1)) we found Z to be much closer to a normal distribution.  Half-normal plot
of this statistic should (for multivariate normal data) show a close fit of each data point to
its expected value.

Another valuable role for this output is to pinpoint particularly nasty outliers that prevent
optimization from succeeding, usually causing an IFAIL=-1 problem.  Searching through
the saved individual likelihood file for the string ' 999 ' (note the leading and trailing blanks)
will find cases where the likelihood could not be evaluated for the particular set of
parameter estimates in use.

Creating RAMpath Graphics Files

Syntax:
Draw= <filename>

Structural equation models may be specified very simply in terms of three matrices.  The
first matrix S, is symmetric and specifies all the two-headed arrows between all the variables
(both latent and observed) in the diagram.  The second matrix A, is asymmetric and specifies
all the single-headed arrows between all the variables in the model.  Causal paths from
variable I to variable j are specified in element Aji.  For example, a path from variable 1 to
variable 4 would be represented in element (4,1) of this matrix.  The third matrix F, is used
to filter the observed variables from the latent variables for the purpose of model fitting.
The development and application of this approach is succinctly described in the RAMpath
manual (McArdle & Boker, 1990).

Iff9 you specify a model with these three matrices, F, A and S, then RAMpath graphics files
may be written and saved to a file with the Draw command.  This file, largely consisting of
a RAMpath input_model command, may be used as input for RAMpath to draw a diagram
of your model to view or to produce publication-quality output on a postscript printer.
Conversely, the command save_mx in RAMpath will generate an MX script.  The MX

graphical interface, currently in alpha-test, provides an alternative to using RAMpath.
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1.

.23 2.

.34 .45 3.

6 Example Scripts
What you will find in this chapter

# Example scripts
# Brief description of the models and methods being used

There are very many different ways of setting up any particular model in MX.  As with any
programming, there is a compromise between compactness and comprehensibility that is set
by the individual user.  The most compact files  are often the least comprehensible; the
longest ones may be prone to typographical errors, and can be very boring to check.
Judicious use of comments can make for a brief but comprehensible input file.

6.1 Using Calculation Groups

The examples in this section do not fit models; matrix formulae are simply evaluated and
the results are printed. 

General Matrix Algebra

Suppose we wish to find the inverse of the symmetric matrix: 

The following input file could be created:

Title: Inverting Symmetric 3 x 3 example file 
 Calculation NGroups=1 
 Begin Matrices;
  A Symm 3 3 
 End Matrices;
 Matrix A 
  1. 
  .23 2 
  .34 .45 3. 
 Begin Algebra;
  B= A~;
 End Algebra; 
 Options MxB=inverted.mat
End

The output matrix inverted.mat contains the nine elements of the matrix B, which is the
inverse of A.
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'' '
RH RHDNRW

RWDRH RW

/0000

Assortative Mating ‘D’ Matrix

Multivariate phenotypic assortative mating (Van Eerdewegh, 1982; Vogler, 1985; Carey,
1986 Phillips et al., 1988; Fulker, 1988)  leads to a predicted covariance matrix between
husbands' and wives' phenotypes of the form:

Thus the matrix D can be obtained from RW
!!1MRH

!!1, where M =RW DRH , the off-diagonal
block of correlations between phenotypes of husbands and phenotypes of wives.  The
following MX input file will calculate matrix D. 

#define nvar 3
Calculation of full D matrix, 3 phenotypes husband & wife 
 Calculation NGroups=1 
 Begin Matrices;
  A Symm nvar nvar    ! Covariance of wives' variables
  B Symm nvar nvar    ! Covariance of husbands' variables 
  C Full nvar nvar    ! Covariance between husband & wife variables
 End Matrices;
 Matrix A 
  1 
  .4 .9 
  .3 .5 1.1
 Matrix B 
  1.2 
  .42 1. 
  .3 .47 .9
 Matrix C 
  .4 .1 .2 
  .05 .3 .12 
  .22 .11 .5 
 Begin Algebra;
  D= A~*C*B~ ;
 End Algebra;
End

The relevant part of the output file looks like this: 
CALCULATION OF FULL D MATRIX, 3 PHENOTYPES HUSBAND & WIFE      
Matrix A
     1.0000
     0.4000    0.9000
     0.3000    0.5000    1.1000    
Matrix B
     1.2000
     0.4200    1.0000
     0.3000    0.4700    0.9000      
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A B
BN C/0

D DA!1B

BNA!1D C!BN(A!1!A1DA!1)B
/000

xn%A!1B (xs&xs)
~

Matrix C  
     0.4000    0.1000    0.2000
     0.0500    0.3000    0.1200
     0.2200    0.1100    0.5000      
Matrix D
     0.4302   -0.2854    0.1497
    -0.3471    0.7770   -0.5237
     0.1361   -0.4908    0.7829

Pearson-Aitken Selection Formula

This example is a little more complex.  In 1934, Aitken generalized Pearson's formulae for
predicting the new mean and variance of variable when selection is performed on a
correlated variable.  Aitken's delightful paper shows how selection on a vector of variables,

, leads to changes in the covariance of correlated variables  that are not themselvesXS XN
selected.  If the original (pre-selection) covariance matrix of  is A, and the originalXS
covariance matrix of  is C, and the covariance between  and  is B, then the originalXN XN XS
matrix may be written 

if selection transforms A to D, the whole new matrix is given by: 

Likewise, if the original means are  and selection modifies  to , the vector of(xs :xn)
) xs xs

~

means after selection is given by:

where  is the deviation of the means of the selected variables from their original(xs&xs)
~

values.

#Ngroups 1
Pearson Aitken Selection formulae 
! Idea is to give original means and covariances, and get new ones 
 Calculation
 Begin Matrices;
  A Symm 2 2   ! Original covariances of selected vars
  B Full 2 2   ! Original covariances of selected and not-selected vars
  C Symm 2 2   ! Original covariances of non-selected vars
  D Symm 2 2   ! Changed A after selection
  S Full 2 1   ! New means of selected vars (assume initially zero)
  N Full 2 1   ! Original means of not-selected vars
 End Matrices;
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A C E

1 11

a c e

PT2

A C E

1 11

a c e

1

PT1

""

 Matrix A 1. .7 1. 
 Matrix B .6 .42 .42 .6 
 Matrix C 1. .352 1. 
 Matrix D 1. .4 1. 
 Matrix N 3 4 
 Matrix S 2 1 
 Begin Algebra;
  V=      D|             D*A~*B_ ! Note that underscore above is UNDER operator
    B'*A~*D| C-B'*(A~-A~*D*A~)*B ;  ! not A with a horizontal bar over it
  M= N + A~*B*S ;
 End Algebra;
End

The new covariance matrix and mean vector are printed as the matrices V and M.

6.2 Model Fitting with Genetically Informative Data

The examples in this section demonstrate elementary use of MX  to fit models to data in the
form of variance-covariance matrices.        

ACE Genetic Model for Twin Data

If data are collected from identical or monozygotic (MZ) twins and from fraternal or
dizygotic (DZ) twins, it is possible to estimate parameters of a model that includes the
effects of additive genes (A), shared or family environment (C) and random or unique
environment (E).  This model is shown in Figure 6.1 as a path diagram. 

Figure 6.1 ACE genetic model for twin data.  Path model for additive genetic (A),
shared environment (C) and specific environment (E) effects on phenotypes (P) of pairs of
twins (T1 and T2).  The parameter á is fixed at 1 for MZ twins and at .5 for DZ twins.  All
latent variables have a variance of 1.0.
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The approach used here generalizes to the multivariate case, by increasing nvar and twonvar
and the datafiles.  Heath et al.  (1989) allow for phenotypic interaction, but this is left for
a later example (p. 120)

#Ngroups 3
#define nvar 1              ! number of variables
#define twonvar 2           ! two times nvar
!  A C E model fitted to the Heath et al (1989) data on alcohol consumption 
G1: model parameters
 Calc
 Begin Matrices;
  X Lower nvar nvar Free    ! genetic structure
  Y Lower nvar nvar Free    ! common environmental structure
  Z Lower nvar nvar Free    ! specific environmental structure
  W Lower nvar nvar Fixed   ! dominance structure
  H Full 1 1
  Q Full 1 1
 End Matrices;
  Matrix H .5
  Matrix Q .25
 Begin Algebra;
  A= X*X' ;
  C= Y*Y’ ;
  E= Z*Z’ ;
  D= W*W’ ;
 End Algebra;
End

G2: Monozygotic twin pairs
 Data NInput-vars=twonvar NObservations=171
 Labels Alc_t1 Alc_t2 
 CMatrix 
  1.28   0.766 1.194 
 Matrices= Group 1
 Covariances  A+C+D+E | A+C+D _
              A+C+D   | A+C+D+E ;
 Options RSiduals
End 

G3: Dizygotic twin pairs
 Data NInput_vars=twonvar NObservations=101
 Labels Alc_t1 Alc_t2 
 CMatrix 
  1.077 0.463 0.962 
 Matrices= Group 1
 Covariances A+C+D+E   | H@A+C+Q@D _
             H@A+C+Q@D | A+C+D+E ;
 Start .6 All
 Options Multiple RSiduals
End
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Power Calculation for the Classical Twin Study

Our next example uses the same model as in the preceding section, but in this case we
calculate the power of the classical twin study to detect the effects of common
environmental variation.  The particular case we wish to examine is where the true
population variance comprises 20% additive genetic, 30% shared environment, and 50%
random environment variance, but we fit a model without shared environment variation to
simulated MZ and DZ covariance matrices.  This example is discussed in some detail in
Neale & Cardon (1992); here we reproduce their results with a simple script.

There are two stages to the power calculation.  First, fixed values of the parameters a, c and
e are given, and a two-group MX script simply calculates the expected covariances under the
model, and saves them to two files, mzsim.cov and dzsim.cov.  The next problem (preferably
in the same input file, though this isn't essential) fits a model of additive genetic and random
environmental variance only.  The complete input file looks like this:

! A C E model for power calculation

#Ngroups 3
! Step 1: Simulate the data
!     30% additive genetic   (.5477²=.3)
!     20% common environment (.4472²=.2)
!     50% random environment (.7071²=.5)
G1: model parameters
 Calc
 Begin Matrices;
  X Lower 1 1 Fixed   ! genetic structure
  Y Lower 1 1 Fixed   ! common environmental structure
  Z Lower 1 1 Fixed   ! specific environmental structure
  H Full 1 1
 End Matrices;
  Matrix X .5477 
  Matrix Y .4472 
  Matrix Z .7071
  Matrix H .5
Begin Algebra;
  A= X*X' ;
  C= Y*Y’ ;
  E= Z*Z’ ;
 End Algebra;
End

G2: MZ twin pairs
 Calc NInput_vars=2 
 Matrices= Group 1
 Covariances A+C+E | A+C _
             A+C   | A+C+E ;
 Options MX%E=mzsim.cov  
End
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G3: DZ twin pairs
 Calc NInput_vars=2 
 Matrices= Group 1
 Covariances A+C+E  | H@A+C _
             H@A+C  | A+C+E ;
 Options MX%E=dzsim.cov
End

!______________________________________________________________
! Step 2: Fit the wrong model to the simulated data
#Ngroups 3 
G1: model parameters
 Calc
 Begin Matrices;
  X Lower 1 1 Free    ! genetic structure
  Y Lower 1 1 Fixed   ! common environmental structure
  Z Lower 1 1 Free    ! specific environmental structure
  H Full 1 1
 End Matrices;
  Matrix H .5
 Begin Algebra;
  A= X*X' ;
  C= Y*Y’ ;
  E= Z*Z’ ;
 End Algebra;
End

G2: MZ twin pairs
 Data NInput_vars=2 NObservations=1000
 CMatrix Full File=mzsim.cov
 Matrices= Group 1
 Covariances A+C+E | A+C _
             A+C   | A+C+E ;
 Option RSiduals
End

G3: DZ twin pairs
 Data NInput_vars=2 NObservations=1000
 CMatrix Full File=dzsim.cov
 Matrices= Group 1
 Covariances A+C+E  | H@A+C _
             H@A+C  | A+C+E ;
 Start .5 All
 Options RSiduals Power= .05,1     ! .05 sig level & 1 df
End

The relevant part of the output is at the end, where we see that for the specified sample sizes
of 1000 pairs each of MZ and DZ twins, the ÷2 goodness-of-fit is 11.35, as found by Neale
& Cardon (1992): 
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Chi-squared fit of model =    11.349   
 Degrees of freedom =  4   
 Probability =      0.023  
Akaike's Information Criterion =     3.349     

Power of this test, at the 0.0500 significance level  with   1. df is 0.920572
Based on your combined observed sample size of        2000.  
The following sample sizes would be required to reject the hypothesis:      
Power    Total N   
.25          290.  
.50          677.  
.75         1223.  
.80         1383.  
.90         1852.  
.95         2290.  
.99         3238.

Because we requested that this statistic be treated as a ÷2 for 1 degree  of freedom for the
purposes of calculating power at the .05 level of  significance (Power=.05, 1), the output
gives the power of the test given the particular sample sizes (and MZ:DZ sample size
proportions), followed by the sample sizes that would be required to obtain certain
commonly  used levels of power.  The power is quite high (.92) with 2000 pairs.  The
required sample sizes to reach certain power levels from .25 to .99 are also shown.

RAM Specification of Model for Twin Data: Graphics Output

Here is a two group example, a phenotypic interaction PACE model (see page 120 for more
details), specified using the three matrix approach of McArdle & Boker (1990).  Details of
this method, and the syntax  of the Draw command can be found on page 108.

The title for the diagram is taken from the title of the group in the MX input file, and the
labels for the variable are taken from labels of the columns of the S matrix.  The draw
commands in this file produce two files, mx.ram and dz.ram.  I don't like the way RAMpath
draws interaction between the phenotypes, but there is a certain irrefutable logic in having
causal arrows always going out the bottom of a variable and in the top.  You  can easily edit
the RAMpath file to get rid of the @ signs if you like. Note that specifying models à la
RAMpath is didactically very clear but computationally inefficient, since the inverse of the
maximally dimensioned A matrix is required. 

! Phenotypic interaction PACE model, Heath 1989
! Demonstration of RAM specification and output 
Group 1: MZ twins
 Data NGroups=2 NInput_vars=2 NObservations=171 
 CMatrix Symm File=alcmz.cov
 Matrices 
  S Symm 8 8 
  I Iden 8 8 
  A Full 8 8 
  F ZIden 2 8 
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 End Matrices;
 Matrix S
  1 
  0 1 
  0 0 1 
  1 0 0 1 
  0 1 0 0 1 
  0 0 0 0 0 1 
  0 0 0 0 0 0 0 
  0 0 0 0 0 0 0 0 
 Label row a a1 c1 e1 a2 c2 e2 p1 p2 
 Label col a a1 c1 e1 a2 c2 e2 p1 p2 
 Label row s a1 c1 e1 a2 c2 e2 p1 p2 
 Label col s a1 c1 e1 a2 c2 e2 p1 p2 
 Specify A 
  0 0 0 0 0 0 0 0 
  0 0 0 0 0 0 0 0 
  0 0 0 0 0 0 0 0 
  0 0 0 0 0 0 0 0 
  0 0 0 0 0 0 0 0 
  0 0 0 0 0 0 0 0 
  1 2 3 0 0 0 0 4           ! This is where the parameters are
  0 0 0 1 2 3 4 0
 Start .6 A 7 1 A 7 3 
 Covariances F*(I-A)~*S*(I-A)~'*F';
 Options RSiduals Draw=mz.ram 
End

Group 2: DZ twins 
 Data NInput_vars=2 NObservations=101 
 CMatrix Symm File=alcdz.cov
 Matrices 
  S Symm 8 8 
  I Iden 8 8 
  A Full 8 8 = A1 
  F ZIden 2 8  
 Matrix S 
  1 
  0 1 
  0 0 1 
  .5 0 0 1 
  0 1 0 0 1 
  0 0 0 0 0 1 
  0 0 0 0 0 0 0 
  0 0 0 0 0 0 0 0 
 Bound -.99 .99 3 
 Bound 0 5 1 2 
 Covariances F*(I-A)~*S*(I-A)~'*F';
 Options RSiduals Draw=dz.ram 
End
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Cholesky Decomposition for Multivariate Twin Data

Any positive definite matrix may be transformed to a product of a lower triangular matrix
and its transpose, i.e.

This Cholesky decomposition is unique for a given positive definite matrix Ó, except for
transformations of sign obtained by multiplying by diagonal matrices with elements set to
-1 or 1.  It has a simple graphic representation as a path diagram (Figure 6.2) where the first
latent factor loads on all variables, the second on all variables except the first, the third on
all variables except the first two, and so on.

Figure 6.2 Cholesky or triangular factor model for three variables Y1, Y2 and Y3

In multivariate genetic analysis, a Cholesky (triangular) decomposition of separate genetic
and environmental covariance matrices is possible.  Thus the additive genetic, shared
environment and random environment factors in the simple ACE model (Figure 6.1) have
a multivariate counterpart where the phenotypes  and  are replaced by vectors ofPT1 PT2
observed phenotypes, and the latent  variables A, C and E are replaced by vectors of factors.
The path coefficients a c and e are replaced by triangular matrices of factor loadings
according to the Cholesky decomposition.  Our aim is to produce a script that is very easy
to modify when the number of variables analyzed changes.

Here we use an input file that calculates the genetic, shared and random environmental
factors in the first group that generates genetic, shared and random environment covariance
matrices  It is then a simple matter to form the expected covariance matrices  for twin data
as partitioned matrices containing linear combinations of these matrices.  It is then
simplicity itself to fix a parameter to zero, as only one character has to be changed from a
1 to a 0.  The example includes data from individuals without cotwins (group 2), as well as
MZ (group 3) and DZ (group 4) twin pairs.  Estimates from a model such as this depend on
the size of the  observed variances, and can be difficult to interpret.  Estimates of the
proportion of variance and covariance due to each source can be obtained using the element
division operator (%) (group 5).
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! Trivariate Cholesky 'Independent Pathways' model
! Data are Extraversion, Neuroticism and CESD Depression 
#Ngroups=5
#Define nvar 3
#Define twonvar 6
#Define nunmatched 449
#Define nMZ 456
#Define nDZ 357

G1: model parameters
 Calculation NGroups=5
 Begin Matrices;
  X Lower nvar nvar Free    ! genetic structure
  Y Lower nvar nvar Free    ! common environmental structure
  Z Lower nvar nvar Free    ! specific environmental structure
  H Full 1 1
 End Matrices;
 Matrix H .5
 Start .6 All
 Begin Algebra;
  A= X*X' ;
  C= Y*Y’ ;
  E= Z*Z’ ;
 End Algebra;
End

! Now get to the actual data, and use the results of calculations
G2: Unmatched twins 
 Data NInput_vars=nvar NObservations=nunmatched
 CMatrix Symm File=endun.cov 
 Matrices= Group 1
 Covariances A+C+E ;
 Option RSiduals
End 

G3: MZ twins with cotwins 
 Data NInput_vars=twonvar NObservations=nMZ
 CMatrix File=endmz.cov
 Matrices= Group 1
 Covariances A+C+E | A+C _
             A+C   | A+C+E ;
 Option RSiduals
End 

G4: DZ twins with cotwins
 Data NInput_vars=twonvar NObservations=nDZ 
 CMatrix File=enddz.cov
 Matrices= Group 1
 Covariances A+C+E   | H@A+C _
             H@A+C   | A+C+E ;
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! By using the Kron operator every element of G is multiplied by .5
 Option RSiduals
End

G5: Calculation of standardized solution  
 Calculation 
 Matrices= Group 1
 I Iden nvar nvar
 Begin Algebra;
  P= A+C+E;
  G= \sqrt(I.P)*A;
  K= \sqrt(I.P)*C;
  L= \sqrt(I.P)*E;
 End Algebra;
 Option RSiduals
End

PACE Model: Reciprocal Interaction between Twins

Figure 6.3 shows a path diagram similar to the ACE model for twin data.  There is now a
path (I) from the phenotype of a  twin to that of his or her cotwin.  This is reciprocal
interaction between dependent variables.  It can easily be shown (see appendix D) that a
matrix representation of this process  is to use the formulation (I !B)!1, where B is a matrix
whose element bjk represents the causal effects of variable k on  variable j. In this case, the
parameter I has been bounded to lie between  -1 and 1, though this is not necessary.

Figure 6.3 PACE model for phenotypic interaction between twins.  Path for additive
genetic (A), shared environment (C) and specific environment (E) effects on phenotypes (P)
of pairs of twins (T1and T2).  Path i models direct phenotypic effects of a twin on his or her
cotwin.  The parameter á is fixed at 1 for MZ twins and at .5 for DZ twins.



Example Scripts 121

!Phenotypic interaction model, fit to Heath 1989 data.  
#Ngroups 3
G1: model parameters
 Calc
 Begin Matrices;
  X Diag 1 1 Free     ! genetic structure
  Y Diag 1 1 Free     ! common environmental structure
  Z Diag 1 1 Free     ! specific environmental structure
  P Full 2 2          ! interaction parameters
  I Iden 2 2
  H Full 1 1
 End Matrices;
 Specify P 
  0 4 
  4 0
 Matrix H .5
 Start .6 All
 Bound -.99 .99 4
 Bound 0 5 1 2 3
 Begin Algebra;
  A= X*X' ;
  C= Y*Y’ ;
  E= Z*Z’ ;
  B=(I-P)~;
 End Algebra;
End

G2: female MZ twin pairs
 Data NInput_vars=2 NObservations=171
 Labels alc_t1 alc_t2
 CMatrix Symmetric File=alcmz.cov
 Matrices= Group 1
 Covariances B &(A+C+E | A+C _
                 A+C   | A+C+E) ;
 Option RSiduals
End 

G3: female DZ twin pairs
 Data NInput_vars=2 NObservations=101
 Labels alc_t1 alc_t2
 CMatrix Symmetric File=alcdz.cov
 Matrices= Group 1
 Covariances B &(A+C+E | H@A+C _
                 H@A+C | A+C+E) ;
 Option RSiduals
 Options NDecimals=4
End
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Scalar, Non-scalar Sex Limitation and Age Regression

The model and data in this section were taken from Neale & Martin (1989) who fitted a
model of scalar sex-limitation to data from 5 groups of twins who reported subjective
impressions of drunkenness following a challenge dose of alcohol.  The model here involves
additive genetic, shared and random environment components (A, C and E; see example on
page 112, and Figure 6.1, but allows these to differ in their effects on the phenotypes of
males and females.  In addition, the regression of the phenotypes on Age is modeled, so that
there are parameters for the variance of age ( ) and for the regressions (s).  A path diagramó2

a
of the model is shown in Figure 6.4. 

Figure 6.4 Model for sex limitation and age regression. Sex-limited additive genetic
(A), shared environment (C) and specific environment (E) effects on phenotypes (P) of pairs
of twins (T1 and T2).    The parameter á is fixed at 1 for MZ twins and at .5 for DZ twins.
Either ã or ç may be estimated with data from twins, but not both.

Note the use of boundary constraints to prevent the estimation of parameters of opposite
sign in the two sexes.

! Age correction 
! Sex limitation model
#Ngroups 7
G1: female model parameters
 Calculation
 Begin Matrices;
  X Lower 1 1 Free    ! genetic structure
  Y Lower 1 1 Free    ! common environmental structure
  Z Lower 1 1 Free    ! specific environmental structure
  S Lower 1 1 Free    ! effect of age on phenotype
  V Lower 1 1 Free    ! variance of age
  H Full 1 1
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 End Matrices;
 Matrix H .5
 Begin Algebra;
  A= X*X' ;
  C= Y*Y’ ;
  E= Z*Z’ ;
  G= S*S’ ;
 End Algebra;
End

G2: male model parameters
 Calculation
 Begin Matrices;
  X Lower 1 1 Free    ! genetic structure
  Y Lower 1 1 Free    ! common environmental structure
  Z Lower 1 1 Free    ! specific environmental structure
  S Lower 1 1 Free    ! effect of age on phenotype
  V Lower 1 1 Free    ! variance of age
  H Full 1 1 =H1
 Begin Algebra;
  A= X*X' ;
  C= Y*Y’ ;
  E= Z*Z’ ;
  G= S*S’ ;
 End Algebra;
End

G3: Female MZ twin pairs
 Data NInput_vars=3 NObservations=43
 CMatrix Symmetric File=drunkmzf.cov
 Labels age drunkt1 drunkt2 
 Matrices= Group 1
 Covariances V*V  | S*V     | S*V    _
             S*V  | A+C+E+G | A+C+G  _
             S*V  | A+C+G   | A+C+E+G ;
 Option RSiduals
End 

G4: Female DZ twin pairs
 Data NInput_vars=3 NObservations=44
 CMatrix Symmetric File=drunkdzf.cov
 Labels age drunkt1 drunkt2 
 Matrices= Group 1
 Covariances V*V  | S*V     | S*V      _
             S*V  | A+C+E+G | H@A+C+G  _
             S*V  | H@A+C+G | A+C+E+G ;
 Option RSiduals
End
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G5: Male MZ twin pairs
 Data NInput_vars=3 NObservations=42
 CMatrix Symmetric File=drunkmzm.cov
 Labels age drunkt1 drunkt2 
 Matrices= Group 2
 Covariances V*V  | S*V     | S*V    _
             S*V  | A+C+E+G | A+C+G  _
             S*V  | A+C+G   | A+C+E+G ;
 Option RSiduals
End 

G6: Male DZ twin pairs
 Data NInput_vars=3 NObservations=38
 CMatrix Symmetric File=drunkdzm.cov
 Labels age drunkt1 drunkt2 
 Matrices= Group 2
 Covariances V*V  | S*V     | S*V    _
             S*V  | A+C+E+G | H@A+C+G  _
             S*V  | H@A+C+G | A+C+E+G ;
 Option RSiduals
End

G7: Female-Male DZ twin pairs
 Data NInput_vars=3 NObservations=39
 CMatrix Symmetric File=drunkdzo.cov
 Labels age drunkt1 drunkt2 
 Matrices= Group 1
  J Computed 1 1 = A2
  K Computed 1 1 = C2
  L Computed 1 1 = E2
  M Computed 1 1 = G2
  N Lower 1 1 = X2
  O Lower 1 1 = Y2
  P Lower 1 1 = Z2
  T Lower 1 1 = S2
  W Lower 1 1 = V2
 Covariances
    V*W  | S*V     | T*W _
    S*V  | A+C+E+G | H@(X*N’))+Q@(Y*O’))+(S*T’)) _
    T*W  | H@(N*X’))+Q@(O*Y’))+(T*S’) | J+K+L+M ;
 Start .5 All
 Start 10 V 1 1 1 V 2 1 1
 Bound 0 5 1 2 3 6 7 8
Option RSiduals
End
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Multivariate Assortative Mating: Modeling D

In this section we return to the transformation of the data described on page 110.  The
question is now, how do we fit a model with parameters in the D matrix, so that we can
explore the significance of marital assortment both within and between variables.  For
example, is there selection of wealthy men by attractive women, or is it just that
attractiveness and wealth are correlated, and partners choose each other on the grounds of
wealth alone?  Neale & McArdle (1990) published a transformation of the matrix  equation
on page 110 which allowed the fitting of LISREL and COSAN  models to marital data.  The
LISREL implementation of the model is not straightforward, involving phantom latent
variables  (Rindskopf, 1984).  However, the model is very easy to implement in MX, as is
shown below.  We have already shown how estimates of parameters in the D  matrix may
be obtained directly; here we show how to test  specific hypotheses about direct and indirect
homogamy.  Phillips et al. (1988) reports data on general intelligence, educational level,
extraversion, anxiety, tough-mindedness and independence in both husbands and wives. The
first  diagonal element of D therefore represents direct homogamy for intelligence; by fixing
this parameter to zero we test the statistical significance of the process.

#Ngroups 1
Assortative mating: Phillips data, Test that D 1 1 is zero 
 Data NInput_vars=12 NObservations=334 
 CMatrix File=asmat.cov 
 Begin Matrices;
  H Symm 6 6 Free
  W Symm 6 6 Free
  D Full 6 6 Free
 End Matrices;
 Start 1. H 1 1 H 2 2 H 3 3 H 4 4 H 5 5 H 6 6 
 Start 1. W 1 1 W 2 2 W 3 3 W 4 4 W 5 5 W 6 6 
 Fix D 1 1 
 Covariance
           H | H*D'*W_
       W*D*H | W         / 
 Option RSiduals 
End

6.3 Fitting Models with Non-linear Constraints

Principal Components

Any symmetric matrix C may be decomposed to a product ABANN where B is a real diagonal
matrix and A is a real orthogonal matrix, i.e. AANN=I.  The elements of B are eigenvalues of
C and the columns of A are the  eigenvectors of C.  In general, if we fitted a model ABANN
where A was full and B was diagonal, it would be underidentified, since there would be
more parameters in the model than in the observed covariance matrix C.  However, we can
supply the identifying constraints that A is orthogonal.  In the MX input file, these
constraints are imposed in group 2, by setting AAN!N!I=0.  This is not an efficient method of
obtaining eigenvalues and eigenvectors of a  matrix, but it does highlight non-linearly
constrained optimization.  For  eigenvalue and eigenvector functions, see Table 4.5.
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#Ngroups 2
Principal components ABA' with constraints to keep A orthogonal 
 Data NInput_vars=3 NObservations=100 
 CMatrix Symm    
  1.  
  .6  .9   
  .4  .2  .7 
 Matrices 
  A Full 3 3 
  B Diag 3 3 
 Covariances A*B*A'/ 
 Specification A 1 2 3 4 5 6 7 8 9 
 Specification B 10 11 12 
 Start 1.0 A(1,1) A(2,2) A(3,3) B(1,1) to B(3,3) 
 Option LS 
End

Here is the constraint A*A'=I 
 Constraint NInput_vars=3 
 Matrices 
  A Full 3 3 = A1  
  I Identity 3 3 
 Constraint A*A'=I / 
 Option LS  
End

Analysis of Correlation Matrices

As Lawley and Maxwell (1971 ch. 7) pointed out, it is incorrect to analyze correlation
matrices by maximum likelihood as if they were covariance matrices,.  Incorrect analysis
leads to biased estimates of the confidence intervals (even the likelihood-based confidence
intervals supplied by MX).  Likewise, the goodness-of-fit statistics can be biased, with
corresponding bias in the tests of hypotheses that use the likelihood ratio test.  These
problems are limited to the analysis of correlation matrices using the maximum-likelihood
method and do not apply to asymptotic weighted least squares. The easiest way to avoid this
problem ! and one that we most strongly recommend ! is to fit models to covariance
matrices (or raw data) wherever possible. 

If it is necessary to fit a model to an observed correlation matrix (perhaps because the
correlation matrix  is the only available data, possibly published without variances or
standard deviations) then MX can be used for correct analysis.  The maximum-likelihood
fit function for covariance matrices assumes that the diagonal elements of the covariance
matrix are free to vary.  If they are all constrained to equal unity, then a modified fit function
is required.  A simple way to implement this alternative fit function in MX is to add a
constraint group which forces the diagonal elements of the correlation matrix to equal unity,
but which does not contribute to the fit function.  To illustrate the effects of correct vs.
incorrect analysis, we use the data of Lawley and Maxwell (1971).  Nine tests of cognitive
ability were administered to seventh and eighth grade students by Holzinger and Swineford
(1939).  The model has three-factors and is shown in Figure 6.4.
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File Contains Data for
PostScript Printers Only
Figure 6.5 Three factor model of 9 cognitive ability tests (Lawley & Maxwell, 1971)

Lawley and Maxwell (1971) Analysis of correlation matrix
#Ngroups 2
#include lawley.dat
 Begin Matrices;
  A Full 9 3
  E Diag 9 9 Free
  R Stan 3 3 Free
 End Matrices;
 Label Row E
  visperc cubes lozenges parcomp sencomp wrdmng addition cntdot stcurve
 Label Col E
  visperc cubes lozenges parcomp sencomp wrdmng addition cntdot stcurve
 Label Row A
  visperc cubes lozenges parcomp sencomp wrdmng addition cntdot stcurve
 Label Col A  Visual Verbal Speed
 Specify A
  13 0 0 
  14 0 0 
  15 0 0 
  0 16 0 
  0 17 0 
  0 18 0 
  0 0 19 
  0 0 20 
  22 0 21 
 Start .5 all
 Intervals A 4 2 A 5 2 A 6 2
 Covariance  A&R + E.E;
 Options RSidual Multiple
End Group
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Constraint Group to make unit diagonal of predicted cov matrix in group 1
 Constraint
 Matrices = Group 1
  B Unit 1 9  ! Matrix of 1's
 End Matrices;
! use the \d2v function to extract the diagonal to a vector
 Constraint B = \d2v (A&R + E.E') ;
 Option df=-9        ! Eliminate degrees of freedom credit for constraints
 Option CI=90
End Group

The output with the constraints gives confidence intervals on the loadings from the verbal
factor to the verbal tests:

  Matrix Element Int.      Estimate         Lower         Upper  Lfail Ufail
  A   1   4   2  95.0        0.9081        0.8284        0.9727  0 0   0 0
  A   1   5   2  95.0        0.8674        0.7774        0.9310  0 0   0 0
  A   1   6   2  95.0        0.8241        0.7240        0.8913  0 0   0 0

To compare these results with the incorrect results that do not include the non-linear
constraint group, the second group was deleted, and NGroups was reduced to 1.  This
incorrect analysis gives much larger confidence intervals on the parameters:

  A   1   4   2  95.0        0.9081        0.7334        1.1178  0 0   0 0
  A   1   5   2  95.0        0.8674        0.6877        1.0816  0 0   0 0
  A   1   6   2  95.0        0.8241        0.6402        1.0425  0 0   0 0
  
Given that these confidence intervals represent approximately 1.96 times the standard errors
reported by Lawley and Maxwell, both sets of results closely agree with theirs.

Fitting a PACE Model to Contingency Table Data on MZ and DZ Twins

In order to fit a model with additive genetic, common and specific environment components
to categorical data collected from twins, we are faced with two possibilities.  One, we could
use PRELIS or similar software to estimate tetrachoric or polychoric correlation matrices
and associate asymptotic weight matrices, or two, we could fit directly to the contingency
tables.  Only the latter approach is suitable for models of phenotypic interaction between the
twins.  Phenotypic interaction leads to different variances between MZ and DZ groups, or
in the case of categorical data, to proportionate group differences in the thresholds.  This
example uses a simple PACE model (see the example shown on page 120) fitted to 2×2
contingency tables obtained from MZ and DZ twin pairs.  There is no information on the
total variance in these data; but there is information on the relative magnitude of the
variance in MZ and DZ groups (via the thresholds).  Therefore, it is necessary to constrain
the total variance prior to interaction to unity.  This is done in the fourth group.  Thresholds
are constrained equal across groups.

#Ngroups 4
Categorical data analysis.  PACE model 
 Calculation



Example Scripts 129

 Begin Matrices;
  X Lower 1 1 Free    ! genetic structure
  Y Lower 1 1 Free    ! common environmental structure
  Z Lower 1 1 Free    ! specific environmental structure
  P Full 2 2          ! interaction parameters
  I Iden 2 2
  T Full 2 1
  H Full 1 1
 End Matrices;
 Specification P  0 4  4 0
 Boundary -.99 .99 4
 Specification T  5 6 
 Matrix H .5
 Start .6 All
 Begin Algebra;
  A= X*X’ ;
  C= Y*Y’ ;
  E= Z*Z’ ;
  B=(I-P)’;
 End Algebra;
End

G2: Monozygotic twin pairs
 Data NInput-vars=2
 CTable 2 2 
 File=usmz.ctg
 Matrices= Group 1
 Thresholds T / 
 Covariances  A+C+E | A+C _  A+C   | A+C+E ;
End 

G3: Dizygotic twin pairs
 Data NInput_vars=2
 CTable 2 2 
 File=usdz.ctg
 Matrices= Group 1
 Thresholds T /
 Covariances A+C+E | H@A+C _ H@A+C+| A+C+E ;
End

Constraint group to ensure a*a + c*c + e*e = 1 
 Data Constraint NInput=1 
 Matrices= Group 1
 I Identity 1 1 
 Begin Algebra;
 S= (A|C|E);
 End Algebra;
 Constraint I = S*S' ;
End
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Twins and Parents: Cultural and Genetic Transmission

The model described has been developed extensively in the univariate and multivariate case
(Eaves et al., 1978; Fulker, 1982; Neale & Fulker, 1984; Vogler, 1985; Fulker, 1988;
Phillips et al., 1988; Cardon, Fulker & Jöreskog, 1991, Neale et al., 1994).  In order to
preserve consistency with the ACE model presented for twin data alone, the same separation
of environmental effects is made here, following the last of the referenced papers instead
of the earlier treatments.  A path diagram of the model is shown in Figure 6.6. 

Figure 6.6 Model of mixed genetic and cultural transmission for data collected from
twins and their parents.  Phenotypes of a husband and wife (PH and PW) directly affect the
shared  environment of their children (CT1 and CT2).  Assortative mating, represented by a
copath (i) based on phenotypes  generates covariance between the latent variables of the
parents.  The additive genetic and shared and specific environmental  effects (parameters
a, c and e) and the covariance of A and C  (parameter s) are assumed to be equal across
generations.  Genetic transmission from parents to offspring is fixed at one half. 
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The development of a covariance structure model for this design is not simple. We describe
two approaches: (i) direct use of RAM theory in which all variables in the model are
represented in two matrices, and the Pearson-Aitken selection formula (see page 111) is
used to handle assortative mating, and (ii) an computationally efficient approach that
progresses in a stepwise fashion from the top to the bottom of the diagram.  Approach (ii)
is recommended for general use except where fast hardware gives approach (i) comfortably
quick turnaround.

RAM Theory Approach
As discussed on page 108, structural equation models may be specified very simply in terms
of three matrices.  The first matrix, S,  is symmetric and specifies all the two-headed arrows
between all the variables  (both latent and observed) in the diagram.  The second matrix, A,
is  asymmetric and specifies all the single-headed arrows between all the variables  in the
model.  Causal paths from variable i to variable j are specified in  element Aji.  The third
matrix, F, is used to filter the  observed variables from the latent variables for the purpose
of model fitting.  This example is a relatively inefficient approach to fitting this model, but
it illustrates the flexibility of MX to implement theory-driven models explicitly.

! Rose social fears data  
! Full 9-Phenotype model for all pedigree types 
! P->C transmission & P--P assortment 

#Ngroups 6
G1 - covariance in the absence of assortative mating 
 Calculation
 Matrices 
  A Full 17 17
  I Iden 17 17
  S Symm 17 17
 End Matrices;
 Specification A 
  0 0 0 0 0  1 2 3 0 0  0 0 0 0 0  0 0 
  0 0 0 0 0  0 0 0 1 2  3 0 0 0 0  0 0 
  0 0 0 0 0  0 0 0 0 0  0 1 2 3 0  0 0 
  0 0 0 0 0  0 0 0 0 0  0 1 2 0 3  0 0 
  0 0 0 0 0  0 0 0 0 0  0 0 2 0 0  1 3
  0 0 0 0 0  0 0 0 0 0  0 0 0 0 0  0 0 
  0 0 0 0 0  0 0 0 0 0  0 0 0 0 0  0 0 
  0 0 0 0 0  0 0 0 0 0  0 0 0 0 0  0 0 
  0 0 0 0 0  0 0 0 0 0  0 0 0 0 0  0 0
  0 0 0 0 0  0 0 0 0 0  0 0 0 0 0  0 0   

  0 0 0 0 0  0 0 0 0 0  0 0 0 0 0  0 0 
  0 0 0 0 0  0 0 0 0 0  0 0 0 0 0  0 0 
  4 4 0 0 0  0 0 0 0 0  0 0 0 0 0  0 0
  0 0 0 0 0  0 0 0 0 0  0 0 0 0 0  0 0 
  0 0 0 0 0  0 0 0 0 0  0 0 0 0 0  0 0 
  0 0 0 0 0  0 0 0 0 0  0 0 0 0 0  0 0 
  0 0 0 0 0  0 0 0 0 0  0 0 0 0 0  0 0
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 Labels Row A 
 !1  2    3    4   5  6  7  8  9 10 11  12 13   14   15  16  17 
 PH PW PMZ1 PMZ2 PDZ AH CH EH AW CW EW AMZ CE EMZ1 EMZ2 ADZ EDZ 
 Labels Col A PH PW PMZ1 PMZ2 PDZ AH CH EH AW CW EW  AMZ CE EMZ1 EMZ2 ADZ EDZ
 Value 0.5  A 12 6 A 12 9 A 16 6 A 16 9
 Specify S 
  0 
  0 0 
  0 0 0 
  0 0 0 0 
  0 0 0 0 0
  0 0 0 0 0  0 
  0 0 0 0 0  8 0 
  0 0 0 0 0  0 0 0 
  0 0 0 0 0  0 0 0 0
  0 0 0 0 0  0 0 0 8 0 

  0 0 0 0 0  0 0 0 0 0  0 
  0 0 0 0 0  0 0 0 0 0  0 5 
  0 0 0 0 0  0 0 0 0 0  0 0 6
  0 0 0 0 0  0 0 0 0 0  0 0 0 0 
  0 0 0 0 0  0 0 0 0 0  0 0 0 0 0 
  0 0 0 0 0  0 0 0 0 0  0 0 0 0 0  5 
  0 0 0 0 0  0 0 0 0 0  0 0 0 0 0  0 0
 Labels Col S PH PW PMZ1 PMZ2 PDZ AH CH EH AW CW EW  AMZ CE EMZ1 EMZ2 ADZ EDZ
 Labels Row S PH PW PMZ1 PMZ2 PDZ AH CH EH AW CW EW  AMZ CE EMZ1 EMZ2 ADZ EDZ
 Start 1.0 S 6 6 S 7 7 S 8 8 S 9 9 S 10 10 S 11 11 S 14 14 S 15 15 S 17 17  
 Begin Algebra;
  R = (I-A)~ &S ;
 End Algebra;
End

Group 2 - Calculations
 Calculation 
 Begin Matrices;
  X IZero 2 17
  R Comp 17 17 =R1 
  Y ZIden 17 15 
  Z ZIden 15 17 
  I Iden  2  2 
  M Symm  2  2 
 End Matrices;
 Specify M 0 7 0 
 Start .1 M 2 1 
 Begin Algebra;
  A= X*R*X' ;      ! covariance matrix of parents
  B= X*R*Y  ;      ! covariance of parent phenotypes with other variables 
  C= Z*R*Z' ;      ! covar. of variables that are not parents' phenotypes
  D=      (A+M)|           (A+M)*A~*B _        
 ((A+M)*A~*B)'|C-B'&(A~*(I-(A+M)*A~)); ! handle the effects of assortative mating
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 End Algebra;
 Options RSiduals 
End

Group 3 - Constraints on kids' G-E variance and covariance 
 Constraint
 Begin Matrices; 
  E Computed 17 17 = D2 
  C Stan 2 2 
  F Full 2 17 
 Constraint \vec(F&E)=\vec(C) / 
 Specify C 8 
 Matrix F 
  0 0 0 0 0  0 0 0 0 0  0 1 0 0 0  0 0 
  0 0 0 0 0  0 0 0 0 0  0 0 1 0 0  0 0 
 Labels Row F PH PW PMZ1 PMZ2 PDZ AH CH EH AW CW EW AMZ CE EMZ1 EMZ2 ADZ EDZ 
 Options RSiduals 
End

Group 4 - MZ twins & their parents 
 Data NInput_vars=4 NObservations=144 
 CMatrix File=usfearmz.cov
 Matrices 
  C Computed 17 17 = D2 
  F IZero 4 17
 Covariances F*C*F'/ 
 Options RSiduals 
End 

Group 5 - DZ twins & their parents 
 Data NInput_vars=4 NObservations=106 
 CMatrix File=usfeardz.cov
 Matrices 
  C Computed 17 17 = D2 
  F Full 4 17
 Covariances F*C*F'/ 
 Matrix F 
  1 0 0 0 0  0 0 0 0 0  0 0 0 0 0  0 0 
  0 1 0 0 0  0 0 0 0 0  0 0 0 0 0  0 0 
  0 0 1 0 0  0 0 0 0 0  0 0 0 0 0  0 0 
  0 0 0 0 1  0 0 0 0 0  0 0 0 0 0  0 0 
 Options RSiduals IT=500 
End

Group 5  - Summarize parameter estimates 
 Calculation 
 Matrices 
  P Full 1 8 
 Compute P/ 
 Labels Col P A C E Q ResGs ResCt Mu S 
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 Specification P 1 2 3 4 5 6 7 8 
 Start .7 P 1 1 P 1 3 
 Start .5 P 1 5 
 Start 1 P 1 6 
 Start .1 P 1 4 P 1 8 
End

@
Computationally Efficient Approach
It is possible to get much faster turnaround with computationally efficient approaches to
structural modeling of twins and their parents.  In our second script the model for mixed
genetic and cultural transmission was specified in terms of the covariances as derived from
the rules of path analysis.  This is the ‘correlational model’ described in Neale et al.  (1994)
but simplified with the algebra syntax.  In group 1 all the model parameters are declared in
separate matrices.  In addition to the A, C and E matrices for additive genetic (A), shared
environmental (C) and unique environmental (E) factors, parameters for the residual
additive genetic variance (RA), the residual common environmental variance (RC) and the
genotype-environment covariance (s) are specified in matrices G, R and S.  The genetic
transmission paths are fixed to .5 (matrix H).  Separate cultural transmission paths are
estimated for the maternal (m) and the paternal (p) effects in matrices M and F. The matrix
B controls the common environmental residual variance and reflects thus the shared
environmental effects of non-parental origin.  Assortative mating is modeled as a copath
(Eerdewegh, 1982) in matrix D.  Matrix P represents the within person covariance.  Finally
the model allows for non-additive paths (N), but they cannot be estimated simultaneously
with the cultural transmission paths in the twin-parent design. The matrices declaration
section is ended with the End Matrices; statement, and followed by starting values and
boundary constraints for the parameters.  Expressions for the expected correlations between
the relevant family members (spouses, father-child, mother-child, MZ twin and DZ twin)
are given in the multistatement algebra section, indicated by the Begin Algebra; End
Algebra; commands.

The model is not identified without nonlinear constraints on certain parameters.  These are
specified in groups 2 to 5.  The within person phenotypic variance is equated to the sum of
all genetic and environmental components in group 2. Group 3 equates the genetic variance
in children to that of the parents.  Similar constraints on the genotype-environment
covariance and the environmental variance are calculated respectively in groups 4 and 5. 

The observed data are supplied and the fit function is calculated in group 6 for MZ twins
and their parents and group 7 for DZ twins and their parents.  The expected covariance of
these groups is a simple combination of the expected covariances for the respective
relationships, as calculated in group 1, using horizontal and vertical adhesion.  The only
difference between the two groups is the expectation for the covariance between twin 1 and
twin 2.

Modifications to the MX code are relatively simple to make.  Additionally, facilities for
dropping parameters to fit reduced models or for adding different data summaries make this
example a convenient starting point for comprehensive analyses of data from all types of
nuclear family and twin and parent data.



Example Scripts 135

! Rose Fear data:  Social phobia 
! Twins and parents: Genetic and cultural transmission model. 
! P--P assortment 

#Ngroups 7
G1: Model parameters
 Calculation
 Begin Matrices;
  D Full nvar nvar free    ! assortative mating paths
  P Symm nvar nvar free    ! within person covariance (Rp)
  A Low  nvar nvar free    ! additive genetic paths
  C Low  nvar nvar free    ! common environment paths
  F Full nvar nvar free    ! paternal cultural transmission
  M Full nvar nvar free    ! maternal cultural transmission
  G Symm nvar nvar free    ! additive genetic covariance (Ra)
  S Full nvar nvar free    ! A-C covariance
  R Symm nvar nvar free    ! common environment covariance (Rc)
  E Low  nvar nvar free    ! specific environment paths
  N Low  nvar nvar         ! non-additive paths
  H Full 1 1         ! scalar, .5
  I Iden 1 1         ! identity matrix
  B Iden 1 1         ! common env residual variance
 End Matrices;
 
 Matrix H 0.5
 Start 1.0 P 1 1
 Start 1.0 G 1 1 
 Start  .5 A 1 1
 Start  .5 C 1 1
 Start 1.0 R 1 1
 Start .707 E 1 1 
 Bound 0 1 D 1 1 1

 Begin Algebra;
  W= P*D*P' ;                                      ! Mother-Father Cov
  T= G*A' + S*C' ;                                 ! Genotype-Phenotype Cov
  O= (P*F'+ W'*M')*C'+ (I+ P*D')*T'*(H@A') ;       ! Father-Child Cov
  Q= (P*M'+ W*F')*C'+ (I+ P*D)*T'*(H@A') ;         ! Mother-Child Cov
  J= A*S*C'+ C*S'*A' ;
  U= A&G+ C&R+ J + N*N' ;                          ! MZ Twin
  V= H@A*(G+ H@(T&(D'+D)))*A'+ C&R+ J+ H@H@N*N' ;  ! DZ Twin 
 End Algebra;
 Option Rsiduals
End
 
G2: Phenotypic Variance Constraint
 Data Constraint NInput=1
 Matrices= Group 1
 Constraint P- (A&G+ C&R+ E*E'+ A*S*C'+ C*S'*A'+ N*N') /
 End
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G3: Genetic Constraint
 Constraint
 Matrices= Group 1
 Constraint  G= (H@(G+ H@(T*(D'+D)*T')+ I)) /
End

G4: A-C Constraint 
 Constraint
 Matrices= Group 1
 Constraint  S= (H@T*(M'+ F'+ D*P*M’+ D'*P*F')) /
End

G5: Common Environment Constraint
 Constraint
 Matrices= Group 1
 Constraint  R= (M*P*M'+ F*P*F'+ M*W*F'+ F*W'*M'+ B) /
End

G6 - MZ Twins and parents
 Data NInput=4 NObservations=144
 Labels DAD_1 MOM_1 T1_1 T2_1 
 CMatrix File=usfearmz.cov
 Matrices= Group 1
 Covariance ( P | W'| O | P )_
            ( W | P | Q | Q )_
            ( O'| Q'| P | U )_
            ( O'| Q'| U'| P )   /
 Option RSiduals
End

G7 - DZ twins and parents  Rose Fear Factor 1 
 Data NInput=4 NObservations=106
 Labels DAD_1 MOM_1 T1_1 T2_1 
 CMatrix File=usfeardz.cov
 Matrices= Group 1
 Covariance ( P | W'| O | P )_
            ( W | P | Q | Q )_
            ( O'| Q'| P | V )_
            ( O'| Q'| V'| P )   /
 Option Rsiduals Multiple
End

! Re-fit model with father-child and mother child cultural transmission set equal
 Equate F 1 1 1 M 1 1 1
End
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6.4 Fitting Models to Raw Data

When models are fitted to raw data, it is normal to provide a model for the means as well
as for the covariances.  Otherwise, there is little difference  in the approaches.  MX

computes minus twice the log-likelihood of the  data, with an arbitrary constant that is a
function of the data.  Thus there  is no overall measure of fit, but there are relative measures
of fit, since  differences in fit function between submodels are distributed as ÷2.

Estimating Means and Covariances

This section demonstrates maximum likelihood estimation using complete, balanced raw
data.  A Cholesky decomposition (see Figure 6.2) is used for the covariance structure, and
the means are estimated separately. Alternative models for covariances or means or both
could be used if desired.

! 
! ML fitting to raw data simulated  
! with SAS, whose PROC COR COV gave: 
! VARIABLE         N         MEAN        STANDARD  
!                                        DEVIATION
! P1            1000     0.00182388     0.98499439 
! P2            1000    -0.98608262     1.40083917 
! P3            1000     2.05400385     1.79139557 
! 
! COVARIANCE MATRIX
!                P1       P2       P3 
! P1       0.970214 0.506058 0.620529 
! P2       0.506058  1.96235 0.807754 
! P3       0.620529 0.807754   3.2091 

! 
! Cholesky for covariance structure 
ML example, calculation of likelihood for each observation.  
 Data NInput_vars=3 NObservations=1000 NGroups=1 
 Rectangular File=mlped.raw 
 Begin Matrices;
  M Full  1 3 Free 
  S Lower 3 3 Free 
 End Matrices;
 Matrix_Start_values S 
  1  
  .6 .8 
  .6 .0 .8 
 Means M / 
 Covariances S*S' / 
End
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The relevant part of the output from this job shows good agreement with the SAS results,
calculating means and covariances in the usual fashion, as would be expected for a sample
size of 1000.  The estimates of the variances are slight underestimates since the ML estimate
of a variance is biased, having denominator n instead of n-1.  Multiplying the ML estimates
by 1000/999 we recover the calculated covariances precisely. 

ML EXAMPLE, CALCULATION OF LIKELIHOOD...  
Matrix M
  This is a FULL matrix of order    1 by    3
     0.0018   -0.9861    2.0536      
Matrix S
  This is a constrained a FULL matrix of order    3 by    3
     0.9692    0.5056    0.6199
     0.5056    1.9604    0.8069
     0.6199    0.8069    3.2059

Variable Pedigree Sizes

When there are many different possible configurations of data, it is most convenient to use
a variable length data file (see page 49).  This information can be read by MX and the
likelihood of the data may be calculated for any structural model for the covariances and the
means.  In  this example, a Cholesky decomposition (see Figure 6.2) of the expected
covariance matrix is specified in Group 1.  

! ML fitting to variable length data
! Cholesky decomposition for the expected covariance matrix 
! Also matrix expression for means 
! - in this case just a simple vector with free parameters
Variable pedigree size ML example
 Data NInput_vars=3 NObservations=1000 NGroups=1 
 VLength File=unbal.raw
 Begin Matrices;
  M Full 1 3 Free 
  S Lower 3 3 Free 
 End Matrices;
 Start .7 S 1 1 - S 3 3 
 Means M / 
 Covariances S*S' / 
 End

Typical lines of the data file unbal.raw look like this: 
2 
1 2   0.5550   -1.1114   
3 
1 2 3   1.6442   -0.1319  3.609508 
3 
1 2 3  -0.2145   -1.2193  5.011667 
3 
1 2 3   2.2274   -1.9423  0.714351 
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yi ' Lf%Xagei

Cov(yi ,yi ) ' LL))%XRX))

There can be problems when beginning to fit models to VL data.  One commonly
encountered difficulty is that at the starting values, the likelihood is effectively zero for one
or more pedigrees.  Since MX is going to try to take the logarithm of the likelihood, some
corrective action is required.  During iteration a penalty function is used, but this doesn’t
help the case where there are poor starting values.  To help guide the user to the problem
with the starting values, MX prints out 3 columns of information: the observed and expected
means, and then the standardized difference between them.  Now if these differences are
large (say more than 3 for any variable), it would be a good idea to change starting values
of either the means (to make the expected ones closer to the observed) or the variances (to
make the standardized difference less).  If the starting values of the means are very bad, then
it would make sense to change them; however, if they are not, the error may occur with
another vector in the dataset, in which case modifying the starting values to increase the
expected variances should help.  If not, examine the expected covariance matrix; sometimes
large expected covariances can make particular pairings of scores rather unlikely.  It is
usually better to supply starting values that specify a diagonal variance-covariance matrix,
since the overall likelihood is simply the product of the likelihoods of the individual
variables.  If each of these likelihoods is reasonable, e.g. a standardized difference of less
than 2, then the overall likelihood will not produce problems unless the number of variables
in the vector is large.

Definition Variables

For example: suppose that the variances of and covariance between two variables vary as
a function of age.  A traditional approach to this problem might involve splitting the sample
into two groups, young and old, and fitting a two-group model.  Comparison of the fit
statistic obtained when the covariance is constrained to be equal in the two groups to that
obtained when each group has its own covariance structure provides a test of heterogeneity.
But what if we want to use all the information on age, which is a continuous variable,
instead of an arbitrary cutoff for young vs. old?  

We can use the observed age variable to define the covariance structure for that particular
observation.  That is, we want to fit a model of the form

where L and X are lower triangular matrices, f is a vector of independent random variables
with mean zero and unit variables, and age is a vector with agei as each element.  Thus the
covariance of yi will be 

where R is a diagonal matrix with agei as all elements.  A script to fit this model is shown
below.  Let variables 1, 2 and 3 correspond to verbal IQ, quantitative IQ, and age, which we
read from file iq.vl.  MX uses the definition keyword to identify variables that are to be;
they are extracted from the dataset so modeling is restricted to the other variables V and Q
(see figure 6.7).
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Figure 6.7 Definition variable example.

Title - verbal and performance IQ covariance as a function of age
 Data NInput=3 NGroups=1      ! Single group example with 3 variables
 Labels Verbal Quant Age
 VL file=IQ.VL
 Definition_variables Age /   ! This variable is referenced as -1 in
 !                              specification statements
 Matrices
  L Lower 2 2 Free   ! Triangular matrix of paths from factor Fi to variable Oj
  X Lower 2 2 Free   ! Triangular matrix of paths from factor Ai to variable Oj
  R Diag  2 2        ! Matrix for variances of Ai latent variables
  M Full 1 2 Free    ! Matrix for estimating means

 Means M /                    ! Formula to compute mean vector
 Covariance L*L' + X*R*X' /   ! Formula to compute covariances
 Specify R  -1 -1   ! Place definition variable on the diagonal elements of R
 Matrix M 100 100   ! Starting values for means
 Matrix L 15 0 15   ! Starting values for constant covariance component
 Matrix X 3 0 3     ! Starting values for age-dependent covariance component
 Option RSiduals    ! Request some output
End
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10 In fact, it only does this if the definition variables have different values from the preceding case, so
sorting may improve performance if the definition variables are quasi-continuous or ordinal.

Ó1 '
1

.8 1

Ó2 '
1

.2 1

Internally, MX will recalculate the predicted covariance matrix for every observation10. The
usual raw data log-likelihood function is computed for every vector of observations, but
using the appropriate covariance matrix for this group.  If we were to assign one and zero
to the age variable in accordance to our cutoff approach, we would get the same results as
the two-group heterogeneity method.

Apart from this handling of continuous heterogeneity, we should be aware that considerably
more complex models may be attacked.  All the tools of MX matrix functions and operators
may be used to define linear and non-linear functions of the definition variables and model
parameters.  

Using NModel to Assess Heterogeneity

MX has special features for assessing possible mixtures of distributions.  Almost all
structural equation models make the implicit assumption that one model describes the whole
population.  In reality, the population may consist of several subpopulations. This type of
analysis requires the raw data to be analyzed, and thus assumes a multivariate normal
distribution of each of the component subpopulations.  The likelihood function is modified
for this type of mixture.  Let L1 be the likelihood under model 1 and L2 be the likelihood
under model 2.  In both cases, this likelihood is computed with the multivariate normal
probability density function, as described on page 70.  The overall likelihood is computed
as a weighted sum of the likelihoods for each model, and the log-likelihood is the logarithm
of this overall likelihood.  MX lets you enter any matrix formula for the weights; here we
illustrate the method with a simple proportion.

Suppose that the population consists of a mixture of two groups, one with population
covariance matrix

and the second with covariance matrix 

Using SAS, a data set of 500 pairs of scores for each of the two groups was simulated.  In
addition, two further scores were added to the dataset: (i) a measure of group membership,
being N(0,1) for the first group, and N(1,1) on the second ! a normally distributed indicator
with a 1 standard deviation difference between the groups; and (ii) a key variable scored 0
for the first group and 1 for the second.  The observed covariance matrices for the two
groups and the recovered estimates for a variety of models are shown in Table 6.1.  First,
the results of fitting a model with no heterogeneity.  The covariance is estimated at .47
which is approximately half way between .2 and .8 simulated for the two populations.
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Second are the results of attempting to detect this heterogeneity with a simple model that
tries to estimate the proportions in the two samples.  There is evidence of heterogeneity
here, because the fit function has improved compared to model 1.  However, the parameter
estimates recovered are not good estimates of the population statistics, particularly for the
low correlation group, whose proportion is estimated at only .27 of the population.  Better
estimates are recovered when the true population proportion is used (Fixed Heterogeneity
model).  Therefore, without external indicators, it seems dangerous to draw conclusions
about the proportions in the population, unless sample sizes are much larger than they are
here.  The Fixed Indicator model uses the information from the indicator variable to partially
discriminate between the populations.  A better fit is found, and good recovery of the
population parameters is obtained.  To make this model realistic, the relationship between
the indicator and group membership should be estimated.  Again, the parameter estimates
are less realistic, particularly for the less correlated subpopulation, when the proportions are
estimated rather than given.  

In summary, it may be possible to detect the presence of heterogeneity in a raw dataset with
a moderately large sample size.  However, unless one has a good indicator variable - and
knows its relationship to the variables being analyzed - it is difficult to quantify the way in
which the ‘latent groups’ differ.  One example where a good indicator variable is available
is genetic linkage (Eaves et al., 1996).  Modeling heterogeneity with and without indicators
is in need of further study, both the complexity of the models used, and the sample
proportions.

Table  6.1 Summary of parameter estimates for a variety of models of heterogeneity
 

Model V1 C V2 p -2ln L df

One model 1.0093 0.4699 0.8394 5344.12 1995

Estimated 
Heterogeneity

0.5949
1.1779

-0.1968
0.7259

1.0359
0.8840

0.2727 5289.39 1991

Fixed
Heterogeneity

0.8409
1.1957

0.1353
0.8113

1.0065
0.8449

.5000 5293.28 1992

Fixed
Indicator

0.9460
1.0920

0.1721
0.7764

0.9830
0.8679

5267.59 1995

Estimated
Indicator

0.6794
1.1672

-0.1476
0.7456

1.0017
0.8922

5263.80 1988

Perfect
Indicator

0.9997
1.0393

0.1356
0.8125

0.8473
1.0036

5101.71 1992

Data were simulated with unit variance and .8 correlations for 500 cases, and unit variance
and .2 correlation for 500 cases.
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#Ngroups 1 
No heterogeneity
 Data NInput=4 Nobservations=0
 Rectangular File=sim1.both
 Labels X Y Z Key
 Select X Y /
 Begin Matrices;
  A Lower 2 2 free
  M Full 1 2 free
 End Matrices;
 Start 1 A 1 1 to A 2 2
 Means M ;
 Covariance A*A' ;
 Option Mx%p=indiv1.lik
End Group;

#Ngroups 1
Simple Heterogeneity - two models, no indicator
 Data NInput=4 Nobservations=0 Nmodel=2
 Rectangular File=sim1.both
 Labels X Y Z Key
 Select X Y /
 Begin Matrices;
  A Lower 2 2 free
  B Lower 2 2 free
  I Unit 1 1
  M Full 1 2 free
  P Full 1 1 free ! proportion in subpopulation 1
 End Matrices;
 Start 1 A 1 1 to A 2 2
 Start .5 B 1 1 to B 2 2 P 1 1
 Bound .001 .999 P 1 1
 Begin Algebra;
  Q = I - P;      ! proportion in subpopulation 2
  W =     P _ 
          Q ;     ! vector of weights
 End Algebra;
 Means M_M ;
 Covariance A*A'_B*B' ;
 Weight W ;
 Option Mx%p=indiv.lik  ! put individual likelihood statistics to file
 Option RSiduals Multiple
End Group;

 ! Fixed proportions heterogeneity
 Drop @.5 P 1 1 1
Exit

#Ngroups 1
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Estimated indicator 
Data NInput=4 Nobservations=0 Nmodel=2
 Rectangular File=sim1.both
 Labels X Y Z Key
 Select X Y Z /
 Definition Z /
 Begin Matrices;
  A Lower 2 2 free ! Cholesky of first subpopulation covariances
  B Lower 2 2 free ! Cholesky of second subpopulation covariances
  I Unit 1 1
  M Full 1 2 free  ! Vector of estimated means
  C Full 1 1
  J Full 1 1 free  !Mean of first group on Z variable
  K Full 1 1 free  !Deviation of Mean of second group
  L Full 1 1 free  !Variance of first group on Z variable
  N Full 1 1 free  !Variance of second group on Z variable
 End Matrices;
 Specify C Z
 Start 1 A 1 1 to A 2 2 L 1 1 N 1 1
 Start .5 B 1 1 to B 2 2 J 1 1
 Start .25 K 1 1
 Bound .1 3 L 1 1 N 1 1
 Bound 0 3 K 1 1
 Bound -3 3 J 1 1 
 Begin Algebra;
  P = \pdfnor(C_J+K_N) % ( \pdfnor(C_J_L) + \pdfnor(C_J+K_N) ) ; ! compute prob
  Q = I - P;
  W =     P _ Q ;
 End Algebra;
 Means M_M ;
 Covariance A*A'_B*B' ;
 Weight W ;
 Option Mx%p=indiv.lik
 Option RS
End Group;

#Ngroups 1
Fixed indicator
 Data NInput=4 Nobservations=0 Nmodel=2
 Rectangular File=sim1.both
 Labels X Y Z Key
 Select X Y Z /
 Definition Z /
 Begin Matrices;
  A Lower 2 2 free
  B Lower 2 2 free
  I Unit 1 1
  M Full 1 2 free
  C Full 1 1
  Z Zero 1 1
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 End Matrices;
 Specify C Z  ! put individual Z variable scores into matrix C
 Start 1 A 1 1 to A 2 2
 Start .5 B 1 1 to B 2 2
 Begin Algebra;
  P = \pdfnor(C_I_I) % ( \pdfnor(C_Z_I) + \pdfnor(C_I_I) ) ; 
      ! P computes probability separately for every case in the sample
  Q = I - P;
  W =     P _ 
          Q ;
 End Algebra;
 Means M_M ;
 Covariance A*A'_B*B' ;
 Weight W ;
 Option Mx%p=indiv.lik
 Option RS 
End Group;

#Ngroups 1
Two groups, perfect indicator (Key)
 Data NInput=4 Nobservations=0 Nmodel=2
 Rectangular File=sim1.both
 Labels X Y Z Key
 Select X Y Key /
 Definition Key /
 Begin Matrices;
  A Lower 2 2 free
  B Lower 2 2 free
  F Full 1 1
  I Unit 1 1
  M Full 1 2 free
  C Full 1 1
  Z Zero 1 1
 End Matrices;
 Specify C Key
 Matrix F 5
 Start 1 A 1 1 to A 2 2
 Start .5 B 1 1 to B 2 2
 Begin Algebra;
  P = C ; ! compute prob
  Q = I - P;
  W =     P _ 
          Q ;
 End Algebra;
 Means M_M ;
 Covariance A*A'_B*B' ;
 Weight W ;
 Option Mx%p=indiv.lik
 Option RS
End Group;
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Using #if and #repeat Commands

When genotype data are available on siblings or twins, one can test the contribution of a
specific locus (in addition to unmeasured residual genetic effects) to the variability of a trait.
In most cases, a large number of markers are typed, which would require repeated running
of the same script with the only change being the name of the rectangular data file being
read in, corresponding to the different markers.  The #repeat command allows the user to
run the script for the different markers in one job.  

The example below shows a script which is being repeated 25 times, with each run reading
a different rectangular data file.  The filename is created with a #define’d string variable at
the end of the filename which changes according to the repeat_number.  The #if command
is used so that for the first nine repeats, the $repeat_number follows 3 zero’s.  For the
remaining repeats (see the #elseif command) the $repeat_number follows 2 zero’s to match
the files (mx0001-mx0025) containing the genotype data for the 25 different locations.   The
full model estimates the contribution of the QTL effect in addition to residual genetic and
specific environmental effects.  The submodel tests the significance of the QTL effect.
When the 25 repeats are done, a System command is invoked to save the relevant output -
the location number and the likelihood ratio chi-square - in a separate file using the ‘grep’
and ‘paste’ commands under Unix.  If ‘grep’ and other Unix like utilities are installed under
Windows, the job could be run on that platform as well.

! Univariate QTL analysis using raw data and weighted IBD probabilities
#define nvar 1
#repeat 25
#Ngroups 1

G1: QTL model with heterogeneity and weights
 Data NInput=27 NModel=1
 Missing=-1.000000
#if repeat_number < 10
 Rectangular File=mx000$repeat_number
#elseif repeat_number < 100
 Rectangular File=mx00$repeat_number
#else
 Rectangular File=mx0$repeat_number
#endif
 Labels
  Locn Pair pibd0 pibd1 pibd2
  ppn1 TOTCH1 LOGTR1 LDL1 APOB1 LOGLPA1 BMI1 HDL1 APOA11 APOA21 APOE1 
  ppn2 TOTCH2 LOGTR2 LDL2 APOB2 LOGLPA2 BMI2 HDL2 APOA12 APOA22 APOE2 
 Select pibd0 pibd1 pibd2 LDL1 LDL2 ;
 Definition pibd0 pibd1 pibd2 ;
 Begin Matrices;
  A Lower nvar nvar Free    ! residual genetic effect
  E Lower nvar nvar Free    ! specific environmental effect
  K Full 3 1                ! weights 
  F Full 1 3 Fixed          ! coefficients 0,0.5,1
  Q Full nvar 1 Free        ! QTL effect
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  H Full 1 1                ! scalar 0.5
  M Full 1 nvar Free        ! means
  L Full 1 1                ! matrix for the location (repeat_number)
 End Matrices;
  Matrix F 0.0 0.5 1.0
  Matrix H .5
  Specify K pibd0 pibd1 pibd2
 Begin Algebra;
  P = F*K;                  ! weighted IBD probabilities
  U = H@A*A';               ! residual genetic variance
  V = A*A' +Q*Q' +E*E';     ! total variance
  W = U + P@Q*Q';           ! total genetic covariance
  Y = V|W_
      W|V;
 End Algebra;
 Means M |M ;
 Covariance Y ;
  Matrix A .5 
  Matrix E .5
  Matrix Q .5
  Matrix M 4.9
  Matrix L    $repeat_number
 Options RSiduals NDecimals=2 Iterations=5000
 Options Multiple Issat
End

! Fit submodel dropping the QTL effect
Drop Q 1 1 1
Exit
#end repeat
system grep ‘Difference Chi’ qtl.mxo > diff
system grep ‘Matrix L   ‘ qtl.mxo > location
system paste location diff > results.txt

6.5 User-Defined Fit Functions

Least Squares

This is a simple example to illustrate the use of a user-defined fit function, in this case
least-squares.  The model statement evaluates to a scalar which is minimized by MX.  Note
that this approach is generally less efficient than using built-in formulae available in MX,
but it is much more flexible.

User defined function to fit to a correlation matrix by least squares 
 Data NInput_vars=3 NGroupies=1 
 CMatrix Symm 
  1 
  .2 1 
  .3 .4 1 
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 Begin Matrices;
  A Symm 3 3 = %O1 
  B Stan 3 3 Free
 End Matrices;
 Begin Algebra; 
  D= \vec(A)-\vec(B);
 End Algebra;
 Compute \sum(D.D);
 Option User
End

Correction for Ascertainment

On page 92, we described how proband-ascertained ordinal data could be used to estimate
population covariances or genetically informative parameters.  This same truncate selection
might be applied using a screening instrument, so that only individuals above a certain
threshold value are sampled.  If such an ascertainment scheme was applied in a pairwise
fashion, such that only pairs in which at least one of the pair was above threshold, the
likelihood of these observations would require correction for the necessarily  missing pairs
concordant for being below threshold.  Mathematically, the likelihood of pair ascertainment
can be expressed as a double integral of the bivariate normal distribution:

where t is the ascertainment threshold, v1 and v2 are the liability values of individuals 1 and
2, and ö is the multinormal probability density function.  The likelihood of a pair of
observations x1 and x2 given the ascertainment scheme is therefore: 

If we use twice the negative log-likelihood as a function to minimize, then the ascertainment
correction becomes more clearly distinct: 

when we have m pairs, the likelihoods are summed over j=1... m, giving 

The first term is the function value calculated by MX when fitting to raw data.  The second
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term may be calculated by obtaining the value of the integral from a dummy categorical data
group using zero observed frequencies in each cell.  Parameter t, the threshold in this group
should be fixed at the population value, and the correlation should be constrained to equal
the correlation of these two variables as estimated from the ascertained data.  The expected
proportions under the bivariate normal distribution are passed as a matrix using the %P
constraint as described on page 59.

Simulated twin data.  Raw ML estimation 
 Data NInput=2 NGroups=3 NObservations=1000 
 Raw_data file=[neale.sas]mzasc.dat 
 Begin Matrices;
  M Full 1 2  
  R Stan 2 2 Free 
 End Matrices;
 Mean M / 
 Covariance R / 
 Matrix M 0 0 
 Bound -.99 .99 R 1 2 
 Option RSiduals 
End

Dummy group to calculate expected cell proportions 
 Data NInput=2 
 CTable 2 2 
  0 0
  0 0           ! It's full of zeros so it contributes zero to the function 
 Begin Matrices;
  T Full 2 1 
  R Stan 2 2 = R1 
 End Matrices;
 Matrix T 1.282 1.282 
 Thresholds T / 
 Covariance R / 
 Option RSiduals 
End

Calculate ascertainment correction 
 Data NInput=0 
 Begin Matrices; 
  I Iden 1 1 
  J IZero 1 2 
  P Full 2 2 = %P2
  T Full 1 1 
 End Matrices;
 Matrix T 2000                 ! twice the sample size of group 1 
 Compute T*\ln(I-J*P*J') / 
 Options User-defined RSiduals Multiple 
End
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6.6 Using Mx Header and Template Files

Factor Models for Twin Data

To simplify fitting models using the Mx script language, a combination of header and
template files can be used, possibly with existing dat files.  The dat file contains the basics
about the actual data, such as number of variables, observations, labels and the data
themselves, either raw or summarized.   The header file includes all the elements of the
model that can be changed in #define’d variables, e.g. the dat file and the variables to be
analyzed.  The last line of the header file calls the template file which remains unchanged.
The template file includes a generic script - in this example for orthogonal factor analysis -
which is fitted to the input defined in the header file.

The dat file in this example contains the covariance matrix for 5 intelligence measures
obtained on 100 subjects.
!
! Factor.dat - example factor analysis data
! 
Data NInputvars=5 NObservations=100
Labels verb perf matrix digit speed
 CMatrix
 1.2
 .1 1.4
 .2 .3 1.5
 .5 .4 .3 2.0
 .3 .2 .4 .5 2.1

The example header file defines the dat file ($DATA), the number of factors (nfac), the
number of variables (nvar), the difference between the number of factors and variables
(diff), and a list of labels of the variables to be analyzed ($vars) which can be easily
changed to fit to different data or a different number of variables or factors.  This header file
can be edited by the end user using the MxGui (MxProject_Header Edit).
!
! Orthogonal factor analysis example
!
! Model is of the form F*F' + E*E
! where F contains the factor loadings and is lower triangular but not square
! Factors are constrained to be orthogonal
! E is diagonal and contains error s.d.'s
!
#define $DATA factor.dat   ! dat file containing Data line, labels and data 
! or data files to be read.  Use MxProject menu - data file edit to create
#define nfac 2             ! number of factors
#define nvar 5             ! number of observed variables - must match number 
! of labels above
#define diff 3             ! set equal to nvar-nfac
#define $vars verb perf matrix digit speed   ! list of labels of variables 
! to be analyzed
!
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! The template file is included below
#include factor.mxt
! End of factor.mxh header file

The template file fits an orthogonal factor analysis with nvar variables (in this example 5)
and nfac factors (in this example 2) to the intelligence data as defined in the header file.
There is no need to edit this template file.
!
!  Template file factor.mxt
!
#NGroups 1
Title Generic orthogonal factor analysis script
 ! include data file
 #include $DATA
 Select $vars
 ! set up matrices
 Begin Matrices;
  G Lower nfac nfac free  ! top part of loading matrix
  H Full  diff nfac Free
  E Diag  nvar nvar Free
 End Matrices;
 Begin Algebra;
  F = G_H ;
 End Algebra;
 Covariance F*F' + E.E ;
End

Alternative Genetic Models for Twin Data

The Mx Gui has an editor for header files which allows the beginning user to fit different
models to different data, simply by changing the relevant lines of the header file.  In the
example below, changes can be made to the number of variables to be analyzed, the
particular variables for analysis, the data files, the model, the starting values, and whether
confidence intervals are requested and means are estimated.  Choices are saved in define’d
variables which are used in the script which is read from a template file using the #include
command.  The template file then fills in the choices for the define’d variables and uses a
variety of #if commands to fit the requested model with or without means and confidence
intervals.  Note that new #if commands can be nested within other #if commands.  This is
done to request the correct confidence intervals depending on the model being fitted.

Example Header File:
! 
!  Header file for ACE/ADE/AE/CE/E Cholesky model
!  Two groups: MZ and DZ twins
!  
!  Data files required are DATAMZ and DATADZ
!  Twin variables are expected to be labeled -T1 and -T2
!  E.g. height-t1 height-t2 bmi-t1 bmi-t2
!
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#define  nvar 1                ! number of variables being analyzed
#define  $vars BMI-T1 BMI-T2   ! labels for variables
#define  $DATAMZ ozbmiomz.dat  ! name of MZ dat file
#define  $DATADZ ozbmiodz.dat  ! name of DZ dat file
#define  $model AE             ! model type: ACE; ADE; AE; CE; or E
#define  intervals 1           ! confidence intervals: 0 = No; or 1 = Yes
#define  means 1               ! means: 0 = No; or 1 = Yes
#define  $startsd .6           ! sd/3 for ACE/ADE sd/2 for AE/CE and sd for E
#define  $startmean 2          ! vector of observed means (nvar of them)
! The template file below should not be changed
#include ace-cholesky.mxt          
! End of ACE-cholesky header file

Example Template file:
! A/C/E/D Cholesky model

#NGroups 1
G1: Model parameters
 Calculation
 Begin Matrices;
#if $model = ACE
  X Lower nvar nvar Free
  Y Lower nvar nvar Free
  Z Lower nvar nvar Free
  W Lower nvar nvar 
#elseif $model = ADE
  X Lower nvar nvar Free
  Y Lower nvar nvar 
  Z Lower nvar nvar Free
  W Lower nvar nvar Free
#elseif $model = AE
  X Lower nvar nvar Free
  Y Lower nvar nvar 
  Z Lower nvar nvar Free
  W Lower nvar nvar 
#elseif $model = CE
  X Lower nvar nvar 
  Y Lower nvar nvar Free
  Z Lower nvar nvar Free
  W Lower nvar nvar 
#elseif $model = E
  X Lower nvar nvar 
  Y Lower nvar nvar 
  Z Lower nvar nvar Free
  W Lower nvar nvar 
#else ! good programming practice is to check for strange input 
      ! and note it when it occurs
  Oops - error, not correct header file model variable
#endif
#if means = 1
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 M Full 1 nvar Free
#else
! Vector of means not required
#endif
  H Full 1 1
  Q Full 1 1
 End Matrices;
  Matrix H .5
  Matrix Q .25
  Start $startsd All
#if means = 1
  Matrix M $startmean
#else
#endif
 Begin Algebra;
  A= X*X';
  C= Y*Y';
  E= Z*Z';
  D= W*W';
 End Algebra:
End

Group 2: MZ twins
#include $DATAMZ
 Select $vars ;
 Begin Matrices= Group 1;
 Covariances A+C+D+E | A+C+D _
             A+C+D   | A+C+D+E ;
#if means = 1
 Means M|M;
#endif
 Options RSiduals
End 

Group 3: DZ twins
#include $DATADZ
 Select $vars ;
 Begin Matrices= Group 1;
 Covariances A+C+D+E   | H@A+C+Q@D _
             H@A+C+Q@D | A+C+D+E ;
#if means = 1
 Means M|M;
#endif
#if intervals = 1
#if model = ACE
 Intervals A 1 1 1 - A 1 nvar nvar C 1 1 1 - C 1 nvar nvar 
 Intervals E 1 1 1 - E 1 nvar nvar
#else if model = ADE 
 Intervals A 1 1 1 - A 1 nvar nvar D 1 1 1 - D 1 nvar nvar
 Intervals E 1 1 1 - E 1 nvar nvar
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#else if model = AE 
 Intervals A 1 1 1 - A 1 nvar nvar E 1 1 1 - E 1 nvar nvar
#else if model = CE 
 Intervals C 1 1 1 - C 1 nvar nvar E 1 1 1 - E 1 nvar nvar
#else if model = E
 Intervals E 1 1 1 - E 1 nvar nvar
#else
#endif
#else
#endif
 Options RSiduals
End
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Appendix A Using MX under different operating systems

A.1 Obtaining MX

Currently the MX statistical engine is available for several Unix systems including Linux,
Solaris, Irix, IBM AIX, Digital Unix, HP Ux).  Versions for most operating systems can be
downloaded via the internet at http://views.vcu.edu/mx.  The MX Graphical Interface
(MXGUI) is available for MS Windows and MS-DOS and may be obtained from
http://www.vipbg.vcu.edu/mxgui.  It can use either the included DOS version or Unix
version to analyze data.

A.2 System Requirements

To run the MX graphical interface, you need:

# An IBM-compatible PC running Windows 3.x or 95 or NT
# A 386-DX (or 386-SX with coprocessor) or above (486-DX, Pentium, etc.)
# A mouse or similar pointing device
# At least 6Mb of free diskspace
# At least 16Mb of installed RAM 

To use networked Unix workstations to run the MX statistical engine (for faster turnaround
of cpu intensive jobs) a TCP/IP connection is needed.

A.3 Installing the MX GUI

Windows 95/98/NT

Download mxgui95.zip and unzip it into a directory such as c:\temp1 (alternatively you can
use WinZip http://www.winzip.com to unzip and install in a single step).  Run the program
setup.exe by double-clicking on it in the Windows Explorer and follow the instructions for
the installation. Choose an installation directory that is different from the directory
containing the setup.exe program.

Windows 3.xx

Download the file mxgui31.zip and unzip it into a directory such as c:\temp1 (alternatively
you can use WinZip http://www.winzip.com to unzip and install in a single step). Run the
setup.exe file by double clicking on it in the File Manager and follow the instructions for
the installation. Choose an installation directory that is different from the directory
containing the setup.exe program; we recommend the default C:\mxgui.

A.4 Using MX

Windows

See Chapter 2.
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Dos

@
MX  is written in about 30,000 lines of FORTRAN, and it links to a further 20,000 lines of
NPSOL code for optimization, so the resultant .exe file does not run within the 640K limit.
Fortunately, the Lahey compiler allows binding of a loader to the code which permits MX

to use memory beyond the 640K limit in 386 and 486 machines. If the program runs out of
memory, it will use virtual memory (disk space) instead, but obviously this can drastically
decrease performance.  The use of Stacker (file compression software) also seems to slow
things down, especially for the first run in a multiple fit file.  Under DOS, performance can
be improved if SMARTMEM is loaded.

O
Note the difference between your computer running out of memory and MX running out of
workspace.  Currently, the PC version is configured with 100,000 double precision words
of workspace; larger workspace can be requested on the command line with e.g.
mx -k 500
which would request 500,000 words of workspace.

We recommend that input files have the naming convention cutename.mx where cutename
is a name of your choice.  To run MX on a PC, create an input script and type
mx cutename.mx {cutename.mxo}
if you are running DOS.  MX now no longer requires that the output files be specified on the
command line.  With the syntax
mx cutename.mx
the output will be in a file called cutename.mxo

If you wish to use other extensions or names for input and output files, you could, for
example, create a file called badname.abc, and use the syntax:
mx badname.abc awfulname.xyz
which would create an output file called awfulname.mxo.  The command
mx badname.abc
would generate an output file called badname.mxo

UnderWindows 3.x, 95 and NT, it is handy to use the Associate option in the File Manager,
to associate .mx files with the mx.exe program file.  Double-clicking a .mx file will then run
MX and produce a .mxo output file.  Feedback of function evaluations is printed on the
screen.  Alternatively the input file can be launched on the MX icon.  Similarly the .mxo files
can be associated with your favorite text editor/viewer, so that output files are easily read
with a double click. 

We can extend the idea of filename extensions a little further to include: covariance
matrices, .COV; correlation matrices, .COR; contingency tables, .CTG; matrices, .MAT; variable
length files, .VL; rectangular files, .REC; weight matrices, .ASY; inverted weight matrices,
.ASI; vectors of means, .MEA; mx save files, .MXS. Of course, it doesn't make any difference
to the program what you call the files, but some widely-used conventions such as these help
you and other users to understand the content of the directory when you (or your colleagues)
look at it six months later.
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Hypertext output may be requested with the -h flag, e.g.
mx -h myfile.mx myfile.htm
would produce html output suitable for looking at with a browser like Netscape.

UNIX

MX may be used very simply in UNIX by typing
mx <inputfile >outputfile
and the parameter & may be added to run jobs in batch.  For very cpu intensive applications
the command 
nice mx <inputfile >outputfile
may be used to run the job at lower priority to avoid overtaxing the system.
You can also use a bmx script which allows you to use the following syntax:
bmx inputfile
The outputfile is then automatically created as inputfile.mxo; the bmx script may be
downloaded, but it is quite short:
(usr/local/bin/mx <$1.mx >$1.mxo; \
echo “Mx has just finished a job for you ^G”; \
echo “See output in $1.mxo”)
and should be entered as a single line, with the literal character ctrl-G (ASCII code 7) to
make a beep.

VAX VMS

The VMS version is no longer supported; however, version # is still available at the website.
MX for VMS is distributed with a command file (MX.COM) which deals with file extensions
and checks to see whether the user has sufficient memory resources.  Typically one user at
a site, the administrator, will keep the command and executable files with read and execute
permission set for all users.  Then if users define the symbol mx with a command such as
$ MX :== "@DISK1:[BOSS.MX]MX.COM DUMMY" 
where DISK1 is the name of the diskdrive, BOSS is the name of the administrator, and
BOSS.MX is the name of the subdirectory in which the mx.com and mx.exe files are stored.
The above symbol definition will permit users to run MX either interactively or as a batch
job.  The only difference is that the former will produce a mesmerizing display of the MX

logo and the latter will free up your terminal to do something else while it runs.  The output
file may be read while the program is running, though emptying the print buffer has been
reduced to improve performance.

MX can be run either interactively with the following syntax:
$ MX CUTENAME
or alternatively, you can run the job in batch with
$ BAT/Q=whateveryoulike MX CUTENAME
for short jobs, ignore the /Q= bit.  With this syntax, the output will be called CUTENAME.MXO.
There is also a facility , called imx, for editing jobs, running them, and viewing the output.
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Appendix B Error Messages

B.1 General Input Reading

If, while looking for a number, a (non-comment) input line with only non-numeric characters
on it (e.g. matrix P) is found, the program issues a warning: 
 **WARNING** Non-numeric characters found when trying to read a number 

This is to alert the user to what is probably an error of not reading enough numbers, for one
of these reasons:
C input lines are too long (1200 column maximum, except AIX (500))
C the matrix was given the wrong dimensions in the matrices command
C too few numbers have been supplied 

This is not a fatal error, but normally some other problem will arise.  Similarly, if too many
numbers have been provided for a matrix, (or a mistake was been made when defining the
type or dimensions of the matrix) the program will usually try to read a number as a
keyword, ask something like “Just what is this keyword supposed to mean?'” and stop.

Sometimes an integer overflow will occur if too many digits have been read in free format
for a number.  Try to keep the number of digits to 9 or less.  If you really need more
precision, use the exponential format (D+00) or read data from a file. 

B.2 Error Codes

This is a list of the error codes reported by MX.  The error messages are supposed to be
self-explanatory, but they are usually quite brief.  Here the italic text is the error, and ordinary

type gives a little further explanation.

1. First input line after title must be DATA.  Will occur if the Title line has been forgotten.  Maybe, just
MAYBE, you got your NG wrong.

2. Data line must have NI and NO specified.  (Data groups only).
3. End of file while trying to read title.
4. Must specify Matrices at this point...  Perhaps you have the wrong NI or the wrong matrix type - SY

instead of FU?
5. Not a legal matrix name.  Use A-Z, one letter only.
6. Illegal matrix type... Check for typos.   You may use ZE, ID, IZ, ZI, DI, SD, SY, ST, FU, UN or LO.
7. Sorry, I seem to be at the end of your input file.  Check NG is correct.
8. Number of selected variables must be less than or equal to number of input variables NI ... Otherwise

you won't be analyzing something sensible and positive definite.
9. Error - no variables selected for analysis.
10. Terribly sorry, I don't have enough workspace.
11. Please try not to refer to matrices that you haven't specified.
12. Please use only Pattern or Specification throughout.  Pattern and Specification cannot be used in the

same input file.
13. Error - no matrix specified...
14. More than 3 dimensions specified.  After a matrix name, there should be a maximum of 3 numbers to

identify the element.
15. Error - matrix has not been specified.
16. Matrix has been specified not to have free elements.  See Table ? to figure out which types of matrix can

have free elements.
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17. You cannot alter off-diagonal elements of a diagonal matrix.
18. Incorrect element of a Subdiagonal matrix specified.  You can't alter elements on or above the diagonal

of as Subdiagonal matrix.
19. Incorrect element of a Standardized matrix specified.  You can't alter elements on the diagonal of a

Standardized matrix.
20. Please use 2 or 3 dimensional format for elements.  Array references should be group,row,col, with group

optional.
21. Sorry, I can't find your matrix element.  I really should tidy up sometime.
22. I'm sorry, I don't understand this part of DATA line, so I'm ignoring it. Note that MX is not LISREL and

won't fiddle about changing data structures using the MA= command syntax.  You can always do it
explicitly in a little MX job which will be good for your immortal soul.

23. Sorry, I couldn't invert your expected matrix.  If the method is ML, the expected matrix has to be
invertible throughout optimization.  MX will try to avoid non-positive definite areas with a penalty
function.

24. Sorry, I couldn't invert your asymptotic matrix.  If the asymptotic matrix is not positive definite, it must
be fixed.  Check the Select command for repetitions of a number, if it is used.

25. Strangely, you seem to have requested an unknown matrix operation.  IF you get this one, memory is
screwed up somehow, and you should check your input file carefully before sending the problem to Mike
Neale.

26. Sorry, your model matrix has different dimensions from your data matrix.  A common silly mistake.
Carefully figure out the dimension of your model, check NI parameter and Select command if used.

27. Sorry, your expected matrix is not symmetric.  The matrix formula you provide should yield a matrix that
is symmetric, if it is to be fitted to data.

28. **Sorry, you must have symmetric or full model**  Same as previous message.
29. Please try not to specify inverse for non-square matrices.  Generalized inverses are not available.  If you

are desperate, try transforming to a partitioned matrix that has a square matrix of full rank at one end.
30. Sorry, had trouble transposing a matrix.  This is an unlikely error.
31. Sorry, I couldn't find the determinant of a matrix.  I thought I put it on the shelf here somewhere...

Probably zero.
32. Uh-oh..  there's a problem with a binary operator.  This can happen when evaluating an illegal matrix

expression, but it is unlikely.
33. Sorry, the matrix addition screwed up.  Very unlikely.
34. The matrices you wish to add are not conformable for addition i.e. the number of rows (columns) in

matrix 1 is not the same as the number of rows (columns) in matrix 2.  Quite likely.  If at first you don't
succeed, check check and check again.

35. The matrices you wish to multiply are not conformable for multiplication i.e. the number of columns in
matrix 1 is not the same as the number of rows in matrix 2.  Be sure that you are using the right type of
multiplication for your application, as well as checking the dimensions of the matrices you wish to
multiply.

36. You seem to have an unknown matrix type.  Very unlikely.
37. I seem to be using an unknown fit function.  Very unlikely.
38. You must specify 3 numbers for boundary constraints.  Lower bound, Upper bound, Parameter # or array

element.
39. First character after BOUNDARY must be alphanumeric.  Alphanumeric means alphabetic

abcdefghijklmnopqrstuv or 01234356789.
40. Sorry, to request AWLS for this group, you should have input an asymptotic covariance matrix.
41. I don't know to what you want me to equate this matrix.  Some error in the =Mi command to equate

matrices.  Equatee must be on the same input line.
42. Sorry, I can't make this matrix equal to a matrix that you haven't supplied yet.  Reorder your groups if

it isn't a typo.
43. Uh-oh... I got stuck inverting a matrix while calculating expected matrix... If you are using an (I-B)~

formulation, make sure that  the parameters in B do NOT have bounds +1 or -1.  This error is a pain in
the neck.  If you get it a lot, let me know.  This can be awkward. Sometimes starting values or changing
the boundaries on parameters can help.

44. Uh-oh... I'm having trouble reading a number in D or E format.  Probably a typo in the data.
45. Sorry - could you put the =filename on the same line as the FI, please?
46. Awfully sorry, I couldn't open a file for you.  Probably a spelling mistake in the filename.
47. I deeply regret that your equality constraint refers to a non-existent matrix.
48. OH NO!  The IOP parameter calling MSOFAR is wrong.  I have no idea what this error means.  The good

thing about it is that you are not likely to get it.
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49. Please don't mix the numeric and array references on a Bound line!  Use only parameter numbers or only
matrix elements. I just get so terribly confused.

50. There I was, looking for a number and - blow me down...  - I just could not find it.  Probably an error in
specifying the dimensions of a matrix.  The end of file was found before the number.

51. It seems rather strange to me to have a + or - sign without a number after it.  Well, wouldn't it seem
strange to you?

52. You seemed to put a * in the middle of two numbers but WRONGLY.  Do not pass GO, do not collect
$200.

53. Uh-oh. Now there are too many numbers in a list.
54. Nincompoop.  Your data matrix has to be positive definite for GLS.  Probably a little harsh, this message.
55. Ouch! do not try to change your mind about the number of groups NG...  This used to cause big

headaches.
56. Awfully sorry, old chap, you're trying to | between matrices that have a different number of rows.  No

can do! Check conformability.
57. Awfully sorry, old chap, you're trying to _ between matrices that have a different number of columns.

No way!  Check conformability.
58. Uh-oh!  Your formula has an illegal character.  Edit your input file and arrest this character immediately.

On the IBM RISC 6000 it can occur spuriously and irrationally if you leave blank spaces at the start of
a line following an underscore.  Heaven knows why.

59. Uh-oh! Your matrix expression has a mistake in it.  Please fix it. This could be unmatched parentheses,
a missing operator or a missing matrix.  Sorry that it isn't more specific...  Also, the matrix formula is
sensitive to un-trapped memory problems.  One known possibility is that you have tried to do something
to a range of matrices from different groups, e.g. Start 1 A 1 1 1 - A 4 3 3.

60. There seems to a problem with your format in your data file.  Put the format in parentheses () or use *
to read data in free format.

61. Oh dear!  The model you specified does not give the same number of rows in the Expected Matrix as
there are in the Observed Matrix for  this group.  Check the order of the model.

62. Stack has overflowed - kick Mike Neale.  This is not necessary to fix the job.  Your complicated
expression ought to be simplified by using a CALC group to precalculate part of it.

63. The matrices you wish to subtract are not conformable for subtraction. i.e. the number of rows (columns)
in matrix 1 is not the same as the number of rows (columns) in matrix 2. If this message doesn't add up
to you, go back to elementary school.

64. I'm terribly sorry, stack 1 has overflowed.  Please abuse Mike Neale.  Simplify your expression with
CALC groups.

65. I'm terribly sorry, stack 2 has overflowed.  Please abuse Mike Neale.  Simplify your expression with
CALC groups.

66. An undefined matrix has been encountered in the matrix formula.  Look for typos in the formula, and in
the matrices command.  You're using a matrix that hasn't been specified for this group.

67. You seem to have missed out an operator...  Matrix names should be single letters only.  Check the matrix
formula for matrix names that are more than one letter.

68. At first you put % but then there was neither O nor E nor R after it.  Please try not to make grammatical
errors like this.  So put O or E or R after it!

69. You seem to be referring to parameter specifications for an Observed or Expected matrix... There is no
way that you are going to be allowed to do this.

70. I want you to get this right.  If you equate to the Observed or Expected matrix, you must specify a
symmetric or full matrix. Get it right.

71. The matrix you are trying to equate to the O matrix is bigger than the Observed matrix following any
selection.  Make it smaller...

72. The matrix you are trying to equate to the expected matrix is not the same size as the expected matrix for
that group.  The size of the expected matrix for that group is determined by the size of its observed matrix
after selection.  Make it the same size.

73. You have to give NG after CA if the first group is a CALC group.  So do it.
74. Tut-tut! you are trying to dot-product two matrices that have different dimensions.  This is different from

ordinary matrix multiplication after all.
75. I tried to read another group and hit the end of file instead.  Either NG= is wrong in group 1, or your

input file has been truncated.  NG is probably wrong.
76. Look buster, if you want to define your own function.  Then please get your matrix formula to define a

1x1 matrix!  See page92
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77. At first I thought you were going to use a function, but then...  You didn’t put \det, \tr, \exp, \ln, \sqrt,
\v2d, \d2v, \m2v, \v2s, \v2f, \eval, \evec, \ivec, \ival, \stnd, \vech, \vec, \sin \cos \tan \sinh \cosh \tanh \muln
- or any functions that I recognize, so I am  confused.. You must have boobed somewhere.

78. Sorry, I only calculate the determinant of SQUARE matrices.
79. Sorry, I only calculate the trace of SQUARE matrices.
80. I say, if you use the \EXPonent operator, you must make sure that the exponent is a 1x1 matrix.  You

won't get this error message.
81. I can't equate this matrix to the observed data of that group, because it hasn’t got any!
82. Hmmm sorry I don't understand this keyword.  Check NI= and FU/FI status of data matrices.
83. HEY! I thought you were going to say = but where's the =??
84. You can only have MA=CM,PM, or KM right now - sorry!
85. Pardon my ignorance here, but I don’t understand this keyword.  You should be using one of the

following: CMatrix, PMatrix, KMatrix, ACov_matrix, Raw_data, MEans, SKew, KUrtosis, LAbels,
SElect, or MATrices.  Where at least the uppercase letters must be given.  Quite possibly, an earlier
command screwed up.  This is commonly encountered in the middle of a list of numbers if the list is too
long.  This may be because you have given too many numbers for the type and size of the matrix
concerned, or alternatively you may have specified the dimensions of that matrix incorrectly.  Note that
you should only supply numbers for the modifiable elements of a matrix, which depends heavily on the
type of matrix.  See Section 4.5 for details on numbers of elements in different types of matrices.

86. Imagine this: I'm reading a number and I see a \ character, so I think.  I know, it must be \PI or \E  BUT
then to my surprise I see it  is neither.  Do be less surprising in your input.

87. I'm sorry, I can't write a matrix that doesn't exist to a file. Remember, this matrix has to be defined in this
group.

88. To output matrices to files, use MX with 1 letter after it (exceptions %E %M %P %V)  then an = sign.
No spaces or anything else allowed.

89. AAAAGH!  You can't assign parameters to the raw data vector.
90. If you want to fit to the raw data vectors, you must put them in a vector that has 1 row and the columns

less than or equal to the  number of input variables before selection, if any.
91. No, I won't let you do this.  It would overwrite the first raw data observation.  Go and edit your data

instead.
92. Uh-oh, attempt to take log of zero or negative value imminent.
93. In order to use Maximum Likelihood to raw data, it is necessary to supply both a model for the

covariances, and one for the means.
94. Sorry, the expected matrix is singular just now.
95. Just WHAT is this keyword supposed to mean? You should be using one of the following:

MEan_structure, THresholds, COvariances, SPecify, MAtrix, PArameter, FIx, FRee, EQual,  VAlue,
STart, BOundary, OPtions, ENd, OUtput.  Where at least the uppercase letters must be given.

96. You have tried to convert something that wasn't a vector into a matrix.  Please try not to abuse \v2
functions in this way.

97. At your starting values, evaluation of the log-likelihood made me take the logarithm of something less
than or equal to zero.  Please revise the starting values.  Nothing for it... change the starting values.  This
could be a problem if there are some gruesome outliers, in which case you'd have to edit your data... See
page 138 for details of how to interpret and respond to the diagnostics printed along with this error
message.

98. Your boundary constraint refers to a parameter not yet specified.
99. You have referred to a non-existent row of a matrix.  It’s silly mistakes like these that my job as a

computer *SO* rewarding.  MX has a lousy imagination when it comes to that sort of thing.
100. You have referred to a non-existent column of a matrix.  There are lots of non-existent columns in Athens

and Rome.
101. You can't use the keyword Full when reading diagonal weight matrices or means.
102. SORRY I don't select DWLS with correlation matrices yet.  Try again after midnight?  Seriously, I'm sorry

about this.
103. Error - you seem to have a non-integer value for the type of person.  Please check: (1) you have the right

pedigree size here (2) you have an integer type identifier for  everyone (3) Nothing screwed up in an
earlier pedigree.  Make sure that you have got your VL file right.  Be extra careful about SAS missing
values.

104. Please, you must tell me the covariance matrix structure in terms of id codes.  Use the IC command to
do this, sometime after MO and before End.
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105. There is a variable in this pedigree whose id has not been given in the IC command.  If no IC was given
a variable who has an id greater than NI is  present..  The mysterious stranger needs to be identified and
deleted.

106. Your model does not define the covariance between TWO people with this ID.  Of course, by default it
won’t.  You need to use the IC command correctly.  See page 49.

107. An element of a matrix that you have tried to \sqrt() is less than zero.  Please don’t let this happen!  This
version of MX does not cater for complex numbers - most of the time.

108. You tried to convert a vector of the wrong length to a symmetric matrix.  Hah, didn't think I'd notice eh?
109. I am only prepared to raise the elements of a matrix to the power of a scalar. Please try to ensure the

matrix to the right of a ̂  is (1 x 1).  Do you have any better ideas?  Kroneckerize it or something like that?
110. You tried to convert a vector of the wrong length to a FULL square matrix.  Silly billy.
111. Eigenvalues of square matrices only, please.
112. Eigenvectors of square matrices only, please.
113. I'm afraid that if you want to fit to raw data you MUST supply models for BOTH means and covariances.

You have forgotten a model for the means.  You might forget your head if it wasn’t attached with lots of
sinews etc.  Of course, you may have asked for the wrong kind of fit function on the Options line.

114. I'm afraid that if you want to fit to raw data you MUST supply models for BOTH means and covariances.
You have forgotten a model for the covariances.  This is the 783rd time you have made this mistake but
you have probably forgotten about the other times.  Of course, you may have asked for the wrong kind
of fit function on the Options line.

115. If you are using Multiple fits, it is impossible to change the matrix formulae - and you can't change
boundaries either.

116. If you wish to Specify, Pattern, or matrix a matrix, you have to specify the group number **on the same
line** BEFORE the Specification, Pattern or Matrix statement.

117. Please try *not* to refer to non-existent groups!  I don’t mind you having fantasies, but there are limits,
you  know.

118. When using the Multiple option you *MUST* use 3 numbers to specify a matrix element: Group #, row
# and column #.

119. I'm *so* embarrassed.  I ran out of workspace.
120. To read labels for a matrix, you must use the syntax: LABEL <R or C> Name.
121. Labels can't be given for a non-existent matrix.  Or rather they can, but MX will stop. Actually they can,

but then the program stops immediately.
122. Labels may not begin with a number because it could confuse me later on.
123. Labels have not been provided for the data, but you seem to be using them to select variables.  Use

numbers or ``Give me labels or give me ...'' 
124. It would seem that you are trying to select a variable that you never supplied.  I expect that, being

human, you made a mistake in the Labels or Select list.
125. I can't select a variable that doesn't exist.  Make sure that NI is correct or fix the Select list.
126. Sorry, you can use covariance structures ONLY in constraint or calculation groups; means not allowed.
127. Incorrect element of a lower triangular matrix specified.
128. Hey! You must have NInputvars=2 to use contingency tables.  A contingency table effectively

cross-tabulates two variables, hence NInputvars must be two on the Data line.
129. I'm afraid that if you want to fit to contingency tables you MUST supply models for BOTH thresholds

and covariances.  You have forgotten a model for the thresholds. Are these lapses of memory getting
more frequent?  Can’t remember??  Maybe you need a checkup... Alternatively you may have requested
the wrong fit function on the options line.

130. I'm afraid that if you want to fit to contingency tables you MUST supply models for BOTH thresholds
and covariances.  You have forgotten a model for the covariances.  Are these lapses of memory getting
more frequent?  Can’t remember??  Maybe you need a checkup... Perhaps you requested the wrong fit
function on the options line?

131. You must supply a matrix expression for the thresholds that will evaluate to a matrix with 2 rows and
with at least as many columns as one less than the number of row categories or the number of column
categories, whichever is greater i.e. max(nrowcat-1,ncolcat-1).  See page 75 for details about thresholds.

132. Sorry, but during optimization I have been asked to calculate a bivariate integral with a correlation of
1 or more.  This is very unreasonable of you Please fix your model so that this doesn't happen.  Use
boundaries or something. Note that the correlation is critical here, not the covariance.  The correlation
is calculated from the expected covariance matrix (the result of the model or covariance statement) as covij

÷ %variivarjj.
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133. Yes I will fit to n x n contingency tables BUT... n must be greater than or equal to 2.  I know a 1×n is
feasible but I haven't written the code for it yet, OK?

134. If you want me to save or get an MX binary file then you MUST supply a filename on the same line It's
just one of those things in life that you have to do.

135. We must have misunderstood each other somehow.  You can't get expected  proportions %P from a group
that isn't using contingency tables.

136. I think memory is screwed up because Mike Neale has screwed up.  Call him on 804 786 8590. Or better
still, E-mail him on neale@ruby.vcu.edu or neale@vcuruby (bitnet).  Has screwed up or is screwed up?

137. Well well well.  You would like graphics.  If so why don't you put an = after the DR command???  MX

likes = signs before filenames.  I don't know how it got into this habit.
138. To fit to mean structures as well as covariances you should provide *both* observed means and a model

for them (as well you know!) I'm going to use the covariances, but the mean - I'm just going to ignore
it OK?  Watch out for this one if you don't seem to get any action with the means.

139. Really I'm very very sorry about this.  It is not under my control. Unless of course I was to use a better
language than FORTRAN77 I suppose... However enough philosophising, the problem is that we have
reached the end of file too soon.  Since you are using * format, you should put one case per line.  That
is to say, there should be NObs lines each with NI variables in a RA data file.  Sometimes error messages
are not just explicit, they are introspective. How would you like to be a computer program?  Could be our
species' destiny.

140. Really I'm very very sorry about this.  It is not under my control.  Unless of course I was to use a better
language than FORTRAN77 I suppose... However enough philosophy, the problem is that we have
reached the end of file too soon.  Make sure that your format is OK.  Also, remember there should be
NObs * NI numbers in your RA data file.  See previous error message for sci-fi remark.

141. Very funny.  Hahaha.  You want me to standardize a non-square matrix? Just how am I supposed to do
that?  If you get any ideas, let me know.

142. It is with great sadness that I have to tell you that I couldn't standardize your matrix because the number
I'm supposed to divide by is too small.  Perhaps you could avoid this problem with boundary constraints.
Poor machine, it tried!

143. You are in terrible danger.  Don't say multiple until the last group. I know I could have just remembered
for you, but I'm lazy too!   There are only so many hours in the day.

144. Sorry, old chap.  You can't specify boundary constraints after options.  I might remedy this problem one
day, but for now just meekly go back and put boundary constraints before the first option line in this
group.

145. Cough, ahem... can you please give me a matrix that has 1 row and 2 column for the power
transformation??  Currently it is only possible to apply a transformation to all variables within each
vector.  This should be upgraded if there is ever support for MX; call your political representative now
to safeguard its future... 

146. For heaven's sake!  Can't you bound your constant so that it is *Greater* than minus the minimum
observation??!  Really most nursery school children have a good idea why this should be done.
Exponentiating (especially for non-integer exponents) numbers that are less than zero is mathematically
awkward, requiring complex numbers and so on.  To avoid complex arithmetic, whose implications are
unclear to me in this context, MX demands that if, say, your minimum observation is -3.1, the constant
required would have to be greater than +3.1.

147. YIKES!  There's something funny about the power function you request.  Remember that after PO you
should supply 2 numbers.  The significance level (alpha) (0.0 < alpha < 1), and the degrees of freedom
of the test (df > 0). Sometimes NAG chokes if alpha is close to 0 or 1.  I can't think why this shouldn't be
self-explanatory.  The numbers should be on the same line as the Power keyword.  Note that Power in
this context refers to calculating the statistical power of the study (see page 114).

148. I can calculate confidence intervals in the range 0 to 100. Please try to stay within these bounds'.
Everyone has their limits, you know.

149. Look here buster, the matrix you \muln must have 3 more rows  than it does columns.
150. There is a problem with the multinormal integral that you tried to compute.  See if you can be kinder to

me by using bounds.
151. Covariance matrices must be computed from sample sizes of at least 1.  I suspect that you forgot to put

the NObs= parameter on the data line.
152. The operation you attempted using ^ is undefined in mathematics in this universe.  Try using e.g. \abs()

if you can, or go to another universe!
153. Look here buster, the matrix you \mnor must have 4 more rows than it does columns.
154. Unknown matrix operator encountered!
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155. Your observed covariance matrix is not positive-definite.  Check that you are reading it in the correct
format - Full or Symmetric.

156. Ooops.  Somehow I was expecting a matrix with 4 more rows than columns for the \momnor function.
Remember, they should be organized this way: Covariance matrix/Mean vector/Thresholds in terms of
standardized units/Selection vector: 1=above, -1=below, 0=not selected/Quadrature parameter
0=default=16; max=64.

157. Aha!  You have tried to use algebra to create a matrix that already exists.  This is strictly illegal in MX.
Go directly to Jail. Do not pass go.  Do not collect $200.  And make sure you haven’t forgotten the End
Algebra; statement.

158. Hmmm you can’t call a matrix this.  Not yet.  Use single letters (A-Z) for now.
159. After the BEGIN keyword I expected to see one of the keywords ALGEBRA or MATRICES.  Are you

dyslexic?  Or am I?
160. Well I was trying to find the above character, but even though I looked through the whole file.  I could

not find it.  Perhaps you forgot it?
161. You seem to have put two binary operators in a row, which is bad syntax.  Might this be a typo?  Just

possibly?
162. I figure that you are trying to redefine something in this  multi-group script but you have not used a

#define Group = n statement yet so I don’t know which group it is you wish to change.
163. Oh no you don’t.  You can’t use a #define group statement unless you are (or rather I am) in multiple

fit mode.
164. Sorry, I don’t understand what you are trying to #define.
165. While searching for a number, I encountered a string more  than 32 characters long.  At first, I thought

it might be a global variable, but it is probably just your mistake.
166. *So* sorry!  You can’t use !@ in the title.  It might  confuse my front end.
167. I was trying to read a number or a #define’d parameter,  and although I found a delimiter, I got to the

end of the line before I found  the number.
168. I know this is rather silly of me, but I really need to know both NI= and NO= in order to read the data

sensibly.  Please look at the DA line.
169. Error: file not found: Check spelling and existence of file.  Remember that UNIX is case sensitive.

Filenames have a maximum of 80 characters including  directory.
170. Once I saw the begin keyword, I thought, ‘Aha I bet this  user is going to say algebra or matrices next.’

Well I lost my bet.  I don’t know what you want to begin.
171. You seem to be trying to end matrices with something other  than ‘end matrices;’.  It’s not that difficult,

is it?
172. This is a generic error message of no use to you whatsoever.  Lots of software has error messages like

this, so I thought  MX should too.  Please contact Mike Neale (neale@ruby.vcu.edu) for help.
173. I’m terribly sorry about this old chap.  You can’t use QQ as a missing data flag.  It’s Just one of those

things.
174. Oh boy.  There I was trying to read stuff in rectangular  format for you.  And then I came across a blank

record.  I suspect a mistake.
175. Ker-splat!  I ran into some peculiar FORTRAN read error.  Check the data file for Suspicious

Characters.
176. An error has occurred while reading a rectangular file.  Make sure that you *don’t* have a FORMAT

at the beginning and note, I can’t read numbers that begin with D, Q or E.
177. Oooooh!  Weird one.  Your data file seems to be empty.
178.
179. Sorry, I’m just not ready to save at this point.
180. This might seem a bit picky of me, but if you are going to  simulate data.  I’d like to know HOW MANY

cases to simulate.  Please give NI=n on the Simulate line, where n is a positive integer.  Thank you.
181. Now look here.  To simulate data you need to have a matrix  formula for the Covariances which is

*Square*, i.e., rows = columns above.
182. Well there I was, all ready to equate all the matrices in this group to those of a previous group, and then

you didn’t put *which* group on the same line.  Try, e.g., Matrices = Group 1.  Note that you *must*
have a space after the word group.

183. Unbalanced parentheses in your formula.  I’m not big into Yin & Yan but this is one area that I’d like
more balance.

184. I can’t give you the sort order of this *column vector* because it has more than one column!!
185. Partition requires syntax \part(A,B) where B has 4 rows  and one column.  Somehow you didn’t do this

right.
186. No no no.  The second matrix in the list \part(A,B) must have 4 rows and 1 column.



166 Appendices

187. I’m afraid that you can’t use & between matrices that are not conformable.  In this case, the number of
columns in the first matrix must equal the number of rows in the second matrix, which must be square
(rows of b=cols of b).

188. Look, how am I supposed to know what these elements outside the dimensions of the matrix are??
189. The partition function is tricky, I know.  Make sure that  the coordinate (2nd) matrix has been initialized

FIRST.  See the example partit.mx for details on how to do this.
190. OK wise guy that’s far enough!  The group you referenced with %O doesn’t have an observed covariance

matrix!
191. The matrices you wish to divide with % are not conformable.  The number of rows in matrix 1 must be

the same as the number of rows in matrix 2, *and* the number of columns in matrix 1 must be the same
as the number of columns in matrix 2.

192. I believe you read in the inverse of a weight matrix, sir?  In that case you can’t use select variables,
because it defeats the point of saving time by pre-inverting.

193. To use the computed matrix type, you have to put = M 1 on the same line, where M is a matrix and 1 is
an earlier group.  I’m not psychic. How am I supposed to know which computed matrix you want it to
equal?

194. Hang on a minute!  You can *only* use the computed matrix type to refer to matrices generated in a
Begin Algebra section.

195. Yoo-hoo! You’re supposed to a letter here...
196. Gadzooks! You didn’t supply a compute statement in that group.  Therefore, I can’t make this matrix

equal to the %E of it.
197. Huh? I don’t understand your optional command line parameters.  Syntax should be e.g.,: mx -f -h -k 100

myfile.mx myfile.mxo where f denotes frontend, h requests html, and k is workspace.  Note: -f implies
reading from keyboard and writing to screen.

198. You must put the filename on the same line when using !@get,!@put or !@exist.
199. Huh?
200. File exists; use !@PUT! to overwrite it.

Some of these error messages are a little informal.  I apologize.  I'm terribly terribly sorry
and I won't do it again.

What I am really sorry about is if MX gives you the wrong error message.  This is quite rare,
but occasionally it is possible to screw up memory, and one of the sensitive areas is the
matrix formula.  When this has occurred, you may see 
“Dump of formula being calculated”
while the program is running.  It is important to check the formulae, but if they seem ok, it’s
time to email technical support.  One untrapped source is if you say

Start .5 A 1 2 3 to A 2 2 3 

in which case everything between the memory addresses of A of group 1 and A of group 2
gets overwritten with .5.  A little care can go a long way; so can a little more foolproof
programing which I shall try to provide as soon as I can. Please let me know of any
nonsensical error messages that you get; elucidation is prerequisite for elimination.
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Appendix C Introduction to Matrices

C.1 The Concept of a Matrix

A matrix is a table of numbers or symbols laid out in rows and columns, e.g. 

The table is enclosed in ( ) or [ ] in most texts.

It is conventional to specify the configuration of the matrix in terms of Rows×Columns and
these are its dimensions.  Thus the first matrix above is of dimensions 3 by 2 and the second
is a 3×3 square matrix.

The most common occurrence of matrices in behavioral sciences is the data matrix where
the rows are subjects and the columns are measures. e.g.

It is convenient to let a single letter symbolize a matrix. This is written in UPPERCASE
boldface.

Thus we might say that our data matrix is A, which in handwriting we would underline with
either a straight or a wavy line. Sometimes a matrix may be written 4A2 to specify its
dimensions. When a matrix consists of a single number, it is called a scalar; when it consists
of single column (row) of numbers it is called a column (row) vector. Vectors are normally
represented as a bold lowercase. Thus the weights of our four subjects are 
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AN '
50 100 150 200

20 40 60 80

aN ' 50 100 150 200

C.2 Matrix Algebra

Matrix algebra defines a set of operations that may be performed on matrices. These
operations include addition, subtraction, multiplication, inversion (multiplication by the
inverse is similar to division) and transposition.

Transposition

A matrix is transposed when the rows are written as columns and the columns are written
as rows.  This operation is denoted by writing ANN or AT. In our example,

a row vector is usually written
 

Clearly, (AN)N = A.

The MX script would look as follows:

Title: transpose of matrix A
 Calculation NGroups=1

 Begin Matrices;
  A Full 4 2
 End Matrices;
 Matrix A
   50 20
  100 40
  150 60
  200 80

 Begin Algebra;
  B= A’;
 End Algebra;
End

Matrix Addition and Subtraction

Matrices may be added and to do so they must be of the same dimension.  They are then said
to be conformable for addition.  Each element in the first matrix is added to the
corresponding element in the second matrix to form the same element in the solution, e.g.
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1 4

2 5

3 6

%

8 11

9 12

10 13

'

9 15

11 17

13 19

1 4

2 5

3 6

%
8 10

9 11

1 4

2 5

3 6

!

2 5

2 5

2 5

'

&1 &1

0 0

1 1

1 4

2 5

3 6

1 3

2 4
'

1×1 % 4×2 1×3 % 4×4

2×1 % 5×2 2×3 % 5×4

3×1 % 6×2 3×3 % 6×4

'

9 19

12 26

15 33

or symbolically, A + B = C.  

You cannot add 

Subtraction works in the same way as addition, e.g.

which is written A - B = C. 

Matrix Multiplication

Matrices may be multiplied and to do so they must be conformable for multiplication.  This
means that adjacent columns and rows must be of the same order.  For example, the matrix
product 3A2×2B2 may be calculated; the result is a 3×2 matrix. In general, if we multiply two
matrices iAj×jBk, the result will be of order i×k.

Matrix multiplication involves calculating a sum of cross products among rows of the first
matrix and columns of the second matrix in all possible combinations, e.g.

This is written AB = C.

The only exception to the above rule is multiplication by a single number called a scalar.
Thus for example, 
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a )) ' 1 2 3

aNa ' 1 2 3

1

2

3

' 12 % 22 % 32 ' 14

V

x

y

O

by convention we write this 2 A. 
It is not possible to use this convention directly in MX; however, it is possible to define a
1×1 matrix with the constant 2.0 as the sole element, and use the kronecker product.

The simplest example of matrix multiplication is to multiply a vector by itself. If we
premultiply a column vector by its transpose, the result is a scalar called the inner product.
For example, if 

then the inner product is 

which is the sum of the squares of the elements of the vector A. This has a simple graphical
representation when A is of dimension 2×1 (see Figure C.1).

Figure C.1 Graphical representation of the inner product a’a of a (2×1) vector a, with
a’=(xy).  By Pythagoras’ theorem, the distance of the point V from the origin O is ,x 2%y 2

which is the square root of the inner product of the vector.



Appendices 171

A '
3 6

2 1
, B '

1 0 3 2

0 &1 &1 1

C '
3 6

2 1
, D '

1 2

3 4

EN '
1 0 3

1 2 1

Multiplication Exercises

Try these exercises either by hand, or using MX, or both, as suits your needs.

Let

1. Form AB. 
2. Form BA. (Careful, this might be a trick question!)

Let

1. Form CD. 
2. Form DC. 
3. In ordinary algebra, multiplication is commutative, i.e. xy=yx. In general, is matrix

multiplication commutative? 
4. Show for two (preferably non-trivial) matrices conformable for multiplication that

(AB)NN = BNNANN 

Let

1. Form E(C+D). 
2. Form EC + ED. 
3. In ordinary algebra, multiplication is distributive, i.e. x(y+z) = xy+xz. In general, is

matrix multiplication distributive?
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y1 ' 2x1 % 3x2

y2 ' x1 % x2

yN ' Ax

y1

y2

'
2 3

1 1

x1

x2

y ' Ax

x ' Bz

y ' A(Bz)

' ABz

' Cz

y1 ' 2x1 % 3x2

y2 ' x1 % x2

x1 ' z1 % z2

x2 ' z1 ! z2

C.3 Equations in Matrix Algebra

Matrix algebra provides a very convenient short hand for writing sets of equations. For
example, the pair of simultaneous equations

may be written

i.e. 

Also if we have the following pair of equations:

Then

where C=AB.  This is very convenient notation compared with direct substitution.
Structural equations are written in this general form, i.e. 
"Real variables (y) = matrix × hypothetical variables."

To show the simplicity of the matrix notation, consider the following equations:

Then we have
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y1 ' 2(z1 % z2) % 3(z1 ! z2)
' 5z1 ! z2

y2 ' (z1 % z2) % (z1 ! z2)
' 2z1 % 0

A '
2 3

1 1
, B '

1 1

1 &1

AB '
5 &1

2 0
,

y1 ' 5z1 ! z2

y2 ' 2z2

1

N&1
XNX

X Y X!X Y!Y
1 2 !2 !4

2 8 !1 2

3 6 0 0

4 4 1 !2

5 10 2 4

From y=ABz, where

and

or

C.4 Calculation of Covariance Matrix from Data Matrix
 
Suppose we have a data matrix A with rows corresponding to subjects and columns
corresponding to variables. We can calculate a mean for each variable and replace the data
matrix with a matrix of deviations from the mean.  That is, each element aij is replaced by
aij!µj where µj is the mean of the jth variable. Let us call the new matrix X. The covariance
matrix is then simply calculated as: 

where N is the number of subjects.

For example, suppose we have the following data:
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X '

!2 !4

!1 2

0 0

1 !2

2 4

1
N&1

X ))X '
1
4

&2 &1 0 1 2

&4 2 0 &2 4

&2 &4

&1 2

0 0

1 &2

2 4

'
1
4

10 12

12 40

'
2.5 3.0

3.0 10.0

'

S 2
x Sxy

Sxy S 2
y

Sxy

sqrtS 2
x S 2

y

'
Sxy

SxSy

1

Sx

0

0 1

Sy

S 2
x Sxy

Sxy S 2
y

1

Sx

0

0 1

Sy

'

1 Rxy

Rxy 1

so the matrix of deviations from the mean is

and therefore the covariance matrix of the observations is 

The correlation is 

In general, a correlation matrix may be calculated from a covariance matrix by pre- and
post-multiplying the covariance matrix by a diagonal matrix D in which each diagonal
element dii is 1÷Si, i.e. the reciprocal of the standard deviation for that variable. Thus in our
two variable example, we have: 
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X )) '
&2 &1 0 1 2

&4 2 0 &2 4

T '
1 1

1 &1

Y )) ' TX ))

'
&6 1 0 &1 6

2 &3 0 3 &2

1
N&1

Y ))Y '
1

N&1
(TX )))(TX )))))

'
1

N&1
TX ))XT ))

' TVxT
))

Transformations of Data Matrices

Matrix algebra provides a natural notation for transformations. If we premultiply the matrix

iBj by another, say kTi, then the rows of T describe linear combinations of the rows of B.
The resulting matrix will therefore consist of k rows corresponding to the linear
transformations of the rows of B described by the rows of T. A very simple example of this
is premultiplication by the identity matrix (written I), which merely has 1's on the leading
diagonal and zeroes everywhere else. Thus the transformation described by the first row may
be written as 'multiply the first row by 1 and add zero times the other rows.' In the second
row, we have 'multiply the second row by 1 and add zero times the other rows,' and so the
identity matrix transforms the matrix B into the same matrix. For a less trivial example, let
our data matrix be X, then

and let

then

In this case, the transformation matrix specifies two transformations of the data: the first row
defines the sum of the two variates, and the second row defines the difference (row 1 - row
2). In the above, we have applied the transformation to the raw data, but for these linear
transformations it is easy to apply the transformation to the covariance matrix. The
covariance matrix of the transformed variates is

which is a useful result, meaning that linear transformations may be applied directly to the
covariance matrix, instead of going to the trouble of transforming all the raw data and
recalculating the covariance matrix.



176 Appendices

|A| ' a11a22!a12a21.

V2

a

O

V1

Aij ' (&1)i%j minor aij

Determinant of a Matrix

For a square matrix A we may calculate a scalar called the determinant which we write as
|A|. In the case of a 2×2 matrix, this quantity is calculated as

The determinant has an interesting geometric representation. For example, consider two
standardized variables that correlate r. This situation may be represented graphically by
drawing two vectors, each of length 1.0, having the same origin and an angle cosine r
between them (see figure C.2). It can be shown (i.e. this is a toughie that involves symmetric
square root decomposition of matrices, eigenvalues etc. that I'm not going to do here) that
the area of the triangle OV1V2 is . Thus as the correlation r increases, the angle.5 |A|
between the lines decreases, the area decreases and the determinant decreases. For two
variables that correlate perfectly, the determinant of the correlation (or covariance) matrix
is zero. For larger numbers of variables, the determinant is a simple function of the
hypervolume in n-space; if any single pair of variables correlates perfectly then the
determinant is zero. In addition, if one of the variables is a linear combination of the others,
the determinant will be zero.

Figure C.2 Geometric representation of the determinant of a matrix.  The angle between
the vectors is the cosine of the correlation between two variables, so the determinant is given
by twice the area of the triangle OV1V2.

To calculate the determinant of larger matrices, we employ the concept of a cofactor. If we
delete row i and column j from an n× n matrix, then the determinant of the remaining matrix
is called the minor of element aij. The cofactor, written Aij is simply:
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11 Those readers wishing to know more about the uses of eigenvalues and eigenvectors may consult Searle
(1982) or any general text on matrix algebra.

|A| ' j
n

i'1

aij Aij

AA!1 ' I

A!1A ' I

The determinant of the matrix A may be calculated as

where n is the order of A.

The determinant of a matrix is related to the concept of definiteness of a matrix. In general,
for a null column vector x, the quadratic form xNNAx is always zero. For some matrices, this
quadratic is zero only if x is the null vector. If xNNAx>0 for all non-null vectors x then we say
that the matrix is positive definite. Conversely, if xNNAx<0 for all non-null x, we say that the
matrix is negative definite.  However, if we can find some non-null x such that xNNAx=0 then
the matrix is said to be singular, and its determinant is zero. As long as no two variables are
perfectly correlated, and there are more subjects than measures, a covariance matrix
calculated from data on random variables will be positive definite.  MX will complain (and
rightly so!) if it is given a covariance matrix that is not positive definite. The determinant
of the covariance matrix can be helpful when there are problems with model-fitting that
seem to originate with the data. However, it is possible to have a matrix with a positive
determinant yet which is negative definite (consider -I with an even number of rows), so the
determinant is not an adequate diagnostic. Instead we note that all the eigenvalues of a
positive definite matrix are greater than zero. Eigenvalues and eigenvectors may be obtained
from software packages and the numerical libraries listed above11.

Inverse of a Matrix

Just as there are many uses for the operation of division in ordinary algebra, there are many
valuable applications of the inverse of a matrix. We write the inverse of the matrix A as A!!1,
and one of the most important results is that

where I is the identity matrix. In this case, the multiplication operation is commutative, so
it is also true that

There are many computer programs available for inverting matrices. Some routines are
general, but there are often faster routines available if the program is given some
information about the matrix, for example whether it is symmetric, positive definite,
triangular or diagonal. Here we describe one general method that everyone should use at
least once in their lives for at least a 3×3 matrix.
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A '
1 2

1 5

|A| ' (1×5)&(2×1) ' 3

Aij '
(&1)2×5 (&1)3×1

(&1)3×2 (&1)4×1

'
5 &1

&2 1

A )

ij '
5 &2

&1 1

A&1 '
1
3

5 &2

&1 1

'

5

3

&2

3

&1

3

1

3

Procedure for Inversion of a General Matrix

In order to invert a matrix, the following four steps can be used:

1. Find the determinant 

2. Set up the matrix of cofactors 

3. Transpose 

4. Divide by the determinant

For example, the matrix 

1.

2.

3.

4.
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1
3

5 &2

&1 1

1 2

1 5
'

1
3

3 0

0 3
'

1 0

0 1

x1%2x2 ' 8
x1%5x2 ' 17

1 2

1 5

x1

x2

'
8

17

Ax ' y

A!1Ax ' A!1y
x ' A!1y

'
1
3

5 &2

&1 1

8

17

'
1
3

6

9

'
2

3

A '

1 1 0

1 0 1

1 &1 0

To verify this, we can multiply AA!1 to obtain the identity matrix:

The result that AA!1 =I may be used to solve the pair of simultaneous equations: 

which may be written

i.e.

premultiplying both sides by the inverse of A, we have

which may be verified by substitution.

For a larger matrix it is more tedious to compute the inverse. Let us consider the matrix
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|A| ' %1 /000 /000
0 1

&1 0
&1 /000 /000

1 1

1 0
%0 /000 /000

1 0

1 &1

' %1%1%0

' 2

Aij '

%/000 /000
0 1

&1 0
&/000 /000

1 1

1 0
%/000 /000

1 0

1 &1

&/000 /000
1 0

&1 0
%/000 /000

1 0

1 0
&/000 /000

1 1

1 &1

%/000 /000
1 0

0 1
&/000 /000

1 0

1 1
%/000 /000

1 1

1 0

'

1 1 &1

0 0 2

1 &1 &1

A )

ij '

1 0 1

1 0 &1

&1 2 &1

A!1 '
1
2

1 0 1

1 0 &1

&1 2 &1

'

.5 0 .5

.5 0 &.5

&.5 1 &.5

1. The determinant is

2. The matrix of cofactors is:

The transpose is

Dividing by the determinant, we have

which may be verified by multiplication with A to obtain the identity matrix.
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x1 x2

a12
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a21a12 % a 2
21a

2
12 % a 3

21a
3

12 ...

Sn' r % r 2 % r 3 % ... r n

rSn' r 2 % r 3 % ... r n % r n% 1

(1 & r)Sn ' r & r n% 1

Sn '
r& r n% 1

1& r

Sn '
r

1& r

'
1

1& r
&

1& r
1& r

'
1

1& r
& 1

'
1

1& a12 a21

& 1

Appendix D Reciprocal Causation

Consider the Path Diagram in Figure D.1.

Figure D.1 Feedback loop between two variables, x1 and x2.

This shows a feedback loop between two internal variables, which we call x variables.  The
total variance of x1 and x2 is the sum of the infinite geometric series: 

It is simple to show that if |a21a12| < 1 then the series converges.  Let the sum of the series
of n terms be called Sn, and let a12a21=r.  Then 

Thus the difference between these two equations is:

and so

which as n gets large tends to 
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A%A 2%A 3% ... ' (I&A)&1&I

x

z

A

S

I

x ' Ax%Iz
' Ax%z

x&Ax ' z
(I&A)x ' z

(I&A)&1(I&A)x ' (I&A)&1 z
x ' (I&A)&1 z

xx) ' (I&A)&1 z((I&A)&1 z))

' (I&A)&1 zz)) (I&A)&1)

' (I&A)&1 S (I&A)&1)

This formula generalizes to the case of a matrix of such effects between more than a pair of
variables (Jöreskog & Sörbom, 1989).  In general

Another way to see this formulation is directly from the structural equations.  Figure D.2
shows a multivariate path diagram of a structural equation model, where x variables are
caused by a set  of independent variables, y.  In addition, the x variables may cause each
other, hence the unidirectional arrow from x to itself.

Figure D.2 Structural equation model for x variables

Algebraically, the model for the x variables is: 

Here x appears on both sides of the equation, and we want it solely in terms of the other
variables in the model.  Hence 

so

This gives a general expression for all variables in a model, both latent and observed.  We
usually want to predict the covariance between the observed variables only, so that this can
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x

z

A

S

I

y

F

y ' Fx
' F (I&A)&1 z

yy) ' F (I&A)&1 z(F (I&A)&1 z))

' F (I&A)&1 zz)) (I&A)&1)F)

' F (I&A)&1 S (I&A)&1)F)

F&((I&A)~ &S )

be compared with (“fitted to”) the data.  A slight addition to the model is needed to filter the
observed variables from the set of all variables (see figure D.3).

Figure D.3 Structural equation model for y variables

The algebra for the covariance of the observed variables, y, is very similar.

so

This model can efficiently and elegantly be specified in MX using the formula:

which invokes the quadratic operator & (see p. 63).
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Appendix E Frequently Asked Questions

Here is a list of some of the frequently asked questions about MX GUI.

# Q. My job is taking a long time to run.  How can I see what's happening?  A. If you
are running a job on the local PC,   then you can double click on the MXE icon which
will give a display   of the progress of the optimization.  Every 20 iterations the value
 of the fit function will be updated.  If you are running on a Unix   host, then there isn't
much that can be done, except to log in to the machine.  If you have used Option
NAG=10 DB=1 then you could view (e.g. using more or tail) the end of the
NAGDUMP.OUT file for the latest set of parameter estimates and fit function.

# Q. What does ‘Appears OK’ mean as a fit result?  What about the other codes?  A.
Appears OK means that optimization seems to be successful.  Optimization is not an
exact science so we can't be 100% sure that a global optimum has been found.  The
other codes and what you should do about them are shown in 
Table~\ref{tab:optcodes} in this document.

# Q. How can I learn more about the MX script language?  A. Chapters #-# and the
quick reference chart are the best place to learn the language, with the possible
exception of attending a course.  To date most MX courses have concerned genetic
models, although some non-genetic courses have been run at the University of
Southern California and The University of Arizona.  Future courses will be announced
on the MX web page http://views.vcu.edu/mx.

# Q. Help!  My diagram has disappeared in the window when I was zooming. How do
I get it back?  A. Press the zoomundo button .File Contains Data for

PostScript Printers Only

# Q. How do I select a different browser or text file viewer?  A. Select
Preferences|Select Test Viewer or Preferences|Select HTML Viewer from the menu
bar.

# Q. How do I work with contingency table data in the GUI?  A. Unfortunately it is not
possible to model contingency table data with the GUI at this time.  It is possible to
draw a diagram for two observed variables (leave them unmapped) and then hit To
Script to build a basic script from a two-variable model.  Then edit this script to
replace the CMatrix with CTable data and add a model for the thresholds in the script
itself.  This does at least avoid the scary part of specifying the structural equation
model with matrix algebra.  We hope to add contingency table modeling in the future.
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